After chemotherapy for the treatment of metastatic bladder urothelial carcinoma (UC), most patients inevitably encounter drug resistance and resultant treatment failure. Deubiquitinating enzymes (DUBs) remove ubiquitin from target proteins and play a critical role in maintaining protein homeostasis. This study investigated the antitumor effect of PR-619, a DUBs inhibitor, in combination with cisplatin, for bladder UC treatment. Our results showed that PR-619 effectively induced dose- and time-dependent cytotoxicity, apoptosis, and ER-stress related apoptosis in human UC (T24 and BFTC-905) cells. Additionally, co-treatment of PR-619 with cisplatin potentiated cisplatin-induced cytotoxicity in UC cells and was accompanied by the concurrent suppression of Bcl-2. We also proved that Bcl-2 overexpression is related to the chemo-resistant status in patients with metastatic UC by immunohistochemistry (IHC) staining. In a xenograft mice model, we confirmed that PR-619 enhanced the antitumor effect of cisplatin on cisplatin-naïve and cisplatin-resistant UCs. Our results demonstrated that PR-619 effectively enhanced the cisplatin-induced antitumor effect via concurrent suppression of the Bcl-2 level. These findings provide promising insight for developing a therapeutic strategy for UC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6830310PMC
http://dx.doi.org/10.3390/cells8101268DOI Listing

Publication Analysis

Top Keywords

pr-619 effectively
8
concurrent suppression
8
suppression bcl-2
8
pr-619
6
deubiquitinating enzyme
4
enzyme inhibitor
4
inhibitor pr-619
4
pr-619 enhances
4
enhances cytotoxicity
4
cisplatin
4

Similar Publications

Glaucoma is a leading cause of irreversible visual impairment worldwide, characterized by the progressive death of retinal ganglion cells (RGCs). Deubiquitinating enzyme (DUB) inhibitors have shown promise as pharmacological interventions for neurodegenerative disorders. Our study focuses on the pan-DUB inhibitor PR-619 and its potential neuroprotective effects on RGCs through modulation of parkin-mediated mitophagy in experimental glaucoma models.

View Article and Find Full Text PDF

Here we used native mass spectrometry (native MS) to probe a SARS-CoV protease, PLpro, which plays critical roles in coronavirus disease by affecting viral protein production and antagonizing host antiviral responses. Ultraviolet photodissociation (UVPD) and variable temperature electrospray ionization (vT ESI) were used to localize binding sites of PLpro inhibitors and revealed the stabilizing effects of inhibitors on protein tertiary structure. We compared PLpro from SARS-CoV-1 and SARS-CoV-2 in terms of inhibitor and ISG15 interactions to discern possible differences in protease function.

View Article and Find Full Text PDF

The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production.

View Article and Find Full Text PDF

Chondrosarcoma, a treatment-resistant cancer with limited therapeutic options, lacks significant advancements in treatment methods. However, PR-619, a novel inhibitor of deubiquitinating enzymes, has demonstrated anti-tumor effects in various malignancies. This study aimed to investigate the impact of PR-619 on chondrosarcoma both and .

View Article and Find Full Text PDF

A substantial number of colon cancer patients do not benefit from immunotherapy using programmed cell death 1 (PD1) antibodies. Therefore, combination therapy drugs are required to improve the efficacy of colon cancer immunotherapy. Recent studies have shown that deubiquitinases are negative regulators of anti-tumour immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!