There is significant interest in developing novel absorbents for hazardous material cleanup. Iron oxide-coated melamine formaldehyde sponge (MFS/IO) absorbents with various IO layer thicknesses were synthesized. Various other absorbents were also synthesized and compared to evaluate the absorption capability of the MFS/IO absorbents for strong acid (15%, v/v) and base (50%, m/m) solutions. Specifically, absorbent and solution drop tests, dust tests, and droplet fragment tests were performed. Among the various absorbents, MFS/IO absorbents possessing a needlelike surface morphology showed several unique characteristics not observed in other absorbents. The MFS/IO absorbents naturally absorbed a strong base solution (absorption time: 0.71-0.5 s, absorption capacity: 10,000-34,000%) without an additional external force and immediately absorbed a strong acid solution (0.31-0.43 s, 9830-10,810%) without absorption delay/overflow during absorbent and solution drop tests, respectively. The MFS/IO absorbents were also demonstrated to be ideal absorbents that generated fewer dust particles (semiclass 1 (ISO 3) level of 280 piece/L) than the level of a clean room (class 100). Furthermore, the MFS/IO absorbents were able to prevent the formation of droplet fragments and solution overflow during the solution drop test due to their unique surface morphology and extremely high absorption speed/capacity, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829578 | PMC |
http://dx.doi.org/10.3390/ma12203389 | DOI Listing |
Materials (Basel)
October 2019
Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Korea.
There is significant interest in developing novel absorbents for hazardous material cleanup. Iron oxide-coated melamine formaldehyde sponge (MFS/IO) absorbents with various IO layer thicknesses were synthesized. Various other absorbents were also synthesized and compared to evaluate the absorption capability of the MFS/IO absorbents for strong acid (15%, v/v) and base (50%, m/m) solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!