Objective: The aim of this study was to compare the locking compression plate (LCP) with polyaxial locking system (PLS) using single cycle to failure 4-point bending test and to investigate the behaviour of PLS with screws inserted mono- and polyaxially using cyclic fatigue test in two bending directions.
Materials And Methods: Tests were performed on bone surrogates in a fracture gap model. The 3.5 LCP and 3.5 PLS plates were tested in single cycle to failure. The 3.5 PLS plates with mono- and polyaxial screws were compared in a cyclic fatigue tests in two orthogonal directions. For both experiments, micro-computed tomography (CT) scans were performed pre- and post-testing to investigate the connections between the screw head and the plate hole. Means of forces and cycles needed to failure were statistically compared.
Results: The PLS plates were on average 30% weaker than LCP plates. Mode of failure was plate bending in the single cycle to failure tests, and plate breakage in the cyclic fatigue tests. Neither screw breakage nor loss of the screw-plate interface occurred. Mono- and polyaxial constructs performed similarly when loaded in the same direction. Micro-CT revealed no additional internal cracks in the plates or screws after testing. It also showed for both PLS and LCP that there was only partial contact of the screw head with the plate hole.
Clinical Relevance: PLS offers a durable locking system, even when the screws are placed polyaxially. The weaker bending properties of the PLS compared with LCP should be considered during preoperative planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0039-1698415 | DOI Listing |
ACS Nano
January 2025
Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
Manganese-based layer-structured transition metal oxides are considered promising cathode materials for future sodium batteries owing to their high energy density potential and industrial feasibility. The grain-related anisotropy and electrode/electrolyte side reactions, however, constrain their energy density and cycling lifespan, particularly at high voltages. Large-sized single-crystal O3-typed Na[NiMnCuTi]O was thus designed and successfully synthesized toward high-voltage and long-lifespan sodium batteries.
View Article and Find Full Text PDFSmall
January 2025
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.
Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.
View Article and Find Full Text PDFHeliyon
January 2025
North China Electric Power University, Department of Power Engineering, China.
In the context of global efforts toward energy transition and carbon neutrality, thermal integrated pumped thermal energy storage (TIPTES) systems, especially those utilizing low-grade heat sources, have garnered significant attention due to their large capacity, flexibility, and environmental advantages. This paper explores a TIPTES system that harnesses industrial waste heat as a heat source. The system's heat pump (HP) subcycle and Organic Rankine Cycle (ORC) subcycle are equipped with regenerators to optimize system configuration and enhance efficiency.
View Article and Find Full Text PDFBMC Geriatr
January 2025
James P. Wilmot Cancer Institute, Rochester, New York, USA.
Background: Older adults with cancer are vulnerable to declines in muscle performance (e.g., strength, speed, duration of muscular contraction), which are associated with worse cancer-related outcomes.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!