A novel method to purify adenovirus based on increasing salt concentrations in buffer.

Eur J Pharm Sci

State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:

Published: January 2020

With the rapid development of gene therapy, gene-based medicine with adenovirus as vectors has become a new method for disease treatment. However, there are still enormous challenges in the large-scale production of adenoviruses for clinical use. Recent reports show that ion-exchange chromatography (IEC) is an effective tool for the isolation and purification of adenovirus. However, during the separation and purification, host cell protein and DNA, as well as serum from the culture medium, can non-specifically occupy numerous binding sites of the chromatography packings, thereby reducing the binding between the adenovirus and packing media. We here report a novel method for highly efficient purification of adenoviruses by increasing the salt concentrations of the samples to be ultrafiltrated by tangential flow filtration, the diafiltration buffer, and the samples for IEC purification. This method could significantly remove a large amount of serum proteins and host cell proteins, increase the amount of sample loaded on the IEC column, and improve the binding of the adenovirus samples to the packing media. A purity of > 95% could be obtained after one chromatography operation, and the number of purification steps and the amount of used packing media were reduced. The method is simple, economical, and efficient, and has excellent applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2019.105090DOI Listing

Publication Analysis

Top Keywords

packing media
12
novel method
8
increasing salt
8
salt concentrations
8
host cell
8
binding adenovirus
8
adenovirus
5
purification
5
method purify
4
purify adenovirus
4

Similar Publications

Spoilage characteristics of sous-vide beef caused by Clostridium estertheticum.

Int J Food Microbiol

January 2025

Unit of Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.

The increasing popularity of sous-vide (SV) cooking necessitates research into the microbiological quality, sensory changes, and shelf life of SV products. Studies show that SV cooking significantly reduces the levels of meat microbiota and pathogens, positively affecting the shelf life and safety of SV products. However, the meat spoilage organism Clostridium estertheticum can survive SV cooking as it can produce heat-tolerant spores.

View Article and Find Full Text PDF

A General Strategy for Controllable Preparation of Nano-CaCO.

Langmuir

January 2025

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

Controllable preparation of inorganic nanomaterials with specific morphology and structure is very important for their applications in various fields. Herein, a general strategy was proposed to controllably synthesize nano-CaCO via a water-in-oil microemulsion method in the rotating packed bed reactor. By tuning key parameters, nano-CaCO with four primarily analyzed morphologies, including spherical, spindle-like, clustered, or linear formations, can be selectively obtained.

View Article and Find Full Text PDF

Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm.

View Article and Find Full Text PDF

Probing the Design Rules for Optimizing Electron Spin Relaxation in Densely Packed Triplet Media for Quantum Applications.

ACS Mater Lett

January 2025

Department of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom.

Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene.

View Article and Find Full Text PDF

Surface Complexation and Packed Bed Mass Transport Models Enable Adsorbent Design for Arsenate and Vanadate Removal.

ACS ES T Eng

October 2024

School of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States of America.

Article Synopsis
  • Co-occurrence of metal oxo-anions like arsenate in drinking water can be harmful to human health, motivating the study of how to better predict their behavior in adsorption systems.
  • By integrating surface complexation models with pore surface diffusion models, researchers accurately predicted the adsorption behaviors of single and mixed solutes, helping to understand how different adsorbents interact with these contaminants.
  • The findings emphasized that enhancing the capacity and reactivity of adsorbents is more effective for improving water purification systems than merely focusing on pore design to minimize transport limitations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!