The measurement of the active material volume fraction in composite electrodes of lithium-ion battery cells is difficult due to the small (sub-micrometer) and irregular structure and multi-component composition of the electrodes, particularly in the case of blend electrodes. State-of-the-art experimental methods such as focused ion beam/scanning electron microscopy (FIB/SEM) and subsequent image analysis require expensive equipment and significant expertise. We present here a simple method for identifying active material volume fractions in single-material and blend electrodes, based on the comparison of experimental equilibrium cell voltage curve (open-circuit voltage as function of charge throughput) with active material half-cell potential curves (half-cell potential as function of lithium stoichiometry). The method requires only (i) low-current cycling data of full cells, (ii) cell opening for measurement of electrode thickness and active electrode area, and (iii) literature half-cell potentials of the active materials. Mathematical optimization is used to identify volume fractions and lithium stoichiometry ranges in which the active materials are cycled. The method is particularly useful for model parameterization of either physicochemical (e.g., pseudo-two-dimensional) models or equivalent circuit models, as it yields a self-consistent set of stoichiometric and structural parameters. The method is demonstrated using a commercial LCO-NCA/graphite pouch cell with blend cathode, but can also be applied to other blends (e.g., graphite-silicon anode).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp04262hDOI Listing

Publication Analysis

Top Keywords

active material
12
cell blend
8
material volume
8
blend electrodes
8
volume fractions
8
half-cell potential
8
lithium stoichiometry
8
active materials
8
active
6
identification stoichiometric
4

Similar Publications

Magnetophononics and the chiral phonon misnomer.

PNAS Nexus

January 2025

The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.

The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.

View Article and Find Full Text PDF

Purpose: This study aims to compare the biomechanical performance of elastic and static suture-based cerclage systems to traditional screw constructs in the setting of modeled glenoid bony augmentation.

Methods: Biomechanical testing was conducted on polyurethane cellular foam blocks modeling a 20 % glenoid defect repaired with a coracoid graft. Constructs consisted of an elastic suture-based cerclage, static suture-based cerclage, and a two-screw construct.

View Article and Find Full Text PDF

Unlabelled: Insulin resistance is major factor in the development of metabolic syndrome and type 2 diabetes (T2D). We extracted 430 genes from literature associated with both insulin resistance and inflammation. The highly significant pathways were Toll-like receptor signaling, PI3K-Akt signaling, cytokine-cytokine receptor interaction, pathways in cancer, TNF signaling, and NF-kappa B signaling.

View Article and Find Full Text PDF

PbZrTiO cubes with tunable sizes and cuboids have been hydrothermally synthesized. PbZrTiO cubes with three different Zr : Ti atomic percentages were also prepared. Analysis of synchrotron X-ray diffraction (XRD) patterns reveals the presence of two lattice components for these samples.

View Article and Find Full Text PDF

Activity and stability origin of core-shell catalysts: unignorable atomic diffusion behavior.

Chem Sci

January 2025

Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Henan 450001 China

The exceptional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances of core-shell catalysts are well documented, yet their activity and durability origins have been interpreted only based on the static structures. Herein we employ a NiFe alloy coated with a nitrogen-doped graphene-based carbon shell (NiFe@NC) as a model system to elucidate the active structure and stability mechanism for the ORR and OER by combining constant potential computations, molecular dynamic simulations, and experiments. The results reveal that the synergistic effects between the alloy core and carbon shell facilitate the formation of Fe-N-C active sites and replenish metal sites when central metal atoms detach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!