A non-enzymatic glucose sensor with enhanced anti-interference ability based on a MIL-53(NiFe) metal-organic framework.

J Mater Chem B

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China.

Published: November 2019

Non-enzymatic glucose sensors are attracting significant attention owing to their low cost, storage convenience and reusability; however, their poor anti-interference caused by their weak selectivity towards glucose limits their practicability. In the present study, a MIL-53(NiFe) metal-organic framework (MOF) was prepared on Ni foam to serve as a self-supported electrode for non-enzymatic glucose detection. Due to the abundant active sites in the MIL-53(NiFe) MOF and its good stability in an alkaline solution, the sensors exhibited a high sensitivity (41.95 mA mM cm) and a low detection limit (0.67 μM). Moreover, the molecular sieve effect of the MIL-53(NiFe) MOF led to a remarkable anti-interference ability, even at the interference concentrations of up to 20% glucose, a higher value than that in human serum. In addition, a heat treatment was carried out to remove the residual terephthalic acid in the MOF tunnels, and this promoted the detection linear range to 2-1600 μM. The reusability, reproducibility and long-term stability of the sensors were also studied, and the results implied good practicability of the MIL-53(NiFe) MOF-based sensors. Furthermore, the good practicability of the sensors was verified by testing human serum samples. The results showed the relative standard deviation of 2.73% from the hospital results, and the standard recovery was nearly 100%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb01832hDOI Listing

Publication Analysis

Top Keywords

non-enzymatic glucose
12
anti-interference ability
8
mil-53nife metal-organic
8
metal-organic framework
8
mil-53nife mof
8
human serum
8
good practicability
8
mil-53nife
5
sensors
5
glucose sensor
4

Similar Publications

Article Synopsis
  • Glucose sensing is essential for managing diabetes, and this study explores NbCT-selenium nanoparticles for effective nonenzymatic glucose detection.
  • The composite material was characterized using techniques like scanning and transmission electron microscopy, and it was tested on a gold disc electrode in an alkaline solution.
  • The sensor operates at a low overpotential of 0.16 V, demonstrating a detection range of 2 to 30 mM, with a notable sensitivity of 4.15 µA mM cm and a detection limit of 1.1 mM.
View Article and Find Full Text PDF

Glycated Hemoglobin and Cardiovascular Disease in Patients Without Diabetes.

J Clin Med

December 2024

Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 St., 41-800 Zabrze, Poland.

Cardiovascular diseases (CVDs) are one of the most critical public health problems in the contemporary world because they are the leading cause of morbidity and mortality. Diabetes mellitus (DM) is one of the most substantial risk factors for developing CVDs. Glycated hemoglobin is a product of the non-enzymatic glycation of hemoglobin present in erythrocytes.

View Article and Find Full Text PDF

A Hierarchical Core-Shell Structure of NiO@CuO-CF for Effective Non-Enzymatic Electrochemical Glucose Detection.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China.

Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)@Cu(OH)-CF) was fabricated and derived from NiO@CuO-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions.

View Article and Find Full Text PDF

Facet engineering of CuO for efficient electrochemical glucose sensing.

Anal Chim Acta

January 2025

Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China. Electronic address:

Background: Accurate monitoring glucose level is significant for human health management, especially in the prevention, diagnosis, and management of diabetes. Electrochemical quantification of glucose is a convenient and rapid detection method, and the crucial aspect in achieving great sensing performance lies in the selection and design of the electrode material. Among them, CuO, with highly catalysis ability, is commonly used as electrocatalyst in non-enzymatic glucose sensing.

View Article and Find Full Text PDF

Serum Pentosidine in Relation to Obesity in Patients with Type 2 Diabetes and Healthy Controls.

Calcif Tissue Int

January 2025

Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Aeschenvorstadt 57, 4051, Basel, Switzerland.

Pentosidine (PEN), a surrogate marker of advanced glycation end-product formation, reflects increased non-enzymatic cross-linking in bone collagen, which is thought to be an important determinant of bone fragility in type 2 diabetes mellitus (T2DM). We aimed to investigate serum concentrations of PEN in patients with T2DM and controls without T2DM and to examine its relationship with bone parameters and metabolic state such as glycaemic control, insulin resistance and body weight. In a cross-sectional study-design, data from postmenopausal women and men with T2DM (n = 110) and controls without T2DM (n = 111) were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!