Baseline locomotion and behavioral traits in the common marmoset Parkinson's disease model were examined to provide basic information for preclinical evaluations of medical treatments. A single regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine at a cumulative dose of 5 mg/kg as the free base over three consecutive days was administered subcutaneously to 10 marmosets. Data obtained from these marmosets were compared to pre-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine levels or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine free marmosets. After the single regimen, reduced daily locomotion, a measure of immobility (a primary sign of Parkinsonism), was observed for more than a year. A moving tremor was also observed by visual inspection during this period. When apomorphine (0.13 mg/kg, s.c.) was administered, either right or left circling behavior was observed in a cylindrical chamber in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine marmosets, suggestive of unequal neural damage between the two brain hemispheres to different extents. MRI revealed that T1 relaxation time in the right substantia nigra correlated with right circling in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine marmosets. Histology was supportive of dopaminergic neural loss in the striatum. These results increase our understanding of the utility and limitations of the Parkinson's disease model in marmosets with a single 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine regimen, and provide reference data for efficacious preclinical evaluations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6964884PMC
http://dx.doi.org/10.1097/FBP.0000000000000509DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
preclinical evaluations
12
baseline locomotion
8
locomotion behavioral
8
behavioral traits
8
traits common
8
common marmoset
8
regimen 1-methyl-4-phenyl-1236-tetrahydropyridine
8
reference data
8
data efficacious
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!