Dysfunctions of mitochondrial fatty acid ß-oxidation (ß-FAO) in various tissues represent a hallmark of many common disorders, and are acknowledged to play an essential role in the pathogenesis of diabetes, obesity, and cardiac diseases. Moreover, inborn defects in ß-FAO form a large family of rare diseases with variable phenotypes, ranging from fatal multi-organ failure in the newborn to isolated adult onset myopathy. These pathologies highlight the critical role of ß-FAO in many tissues with high-energy demand (heart, muscle, liver, kidney). Furthermore, and unexpectedly, very recent data unveiled the possible involvement of ß-FAO in instructing complex non energy-related functions, such as chromatin modification, control of neural stem cell activity, or survival and fate of cancer cells. Pharmacological targeting of ß-FAO by small molecules might therefore open new avenues for the treatment of various rare or common diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1051/medsci/2019156 | DOI Listing |
Sci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
A high-calorie diet and lack of exercise are the most important risk factors contributing to metabolic dysfunction-associated steatotic liver disease (MASLD) initiation and progression. The precise molecular mechanisms of mitochondrial function alteration during MASLD development remain to be fully elucidated. In this study, a total of 60 male C57BL/6J mice were maintained on a normal or amylin liver NASH (AMLN) diet for 6 or 10 weeks.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Department of Neurology, Peking University First Hospital, Beijing, China. Electronic address:
DL-3-n-butylphthalide (NBP) exhibits promising pharmacological efficacy against ischemia-reperfusion injury, but its protective effects may involve many mechanisms that are yet to be fully understood. This study aimed to profile the metabolic alterations induced by NBP during the process of ischemia-reperfusion using spatial metabolomics. Our study found that NBP could significantly reduce the ischemic area and restore physical function by potentially modulating pathways of the citrate cycle, pyruvate metabolism, autophagy, and unsaturated fatty acid biosynthesis.
View Article and Find Full Text PDFHepatol Commun
February 2025
Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Unlabelled: High temperature is an unavoidable environmental stress that generally exerts detrimental effects on organisms and has widespread effects on metabolism. Spermidine is an important member of the polyamines family and is involved in a range of abiotic stress responses in plants. Mitochondria play an essential role in cellular homeostasis and are key components of the stress response.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Graduate school, Shenyang Medical College, Shenyang. No. 146, Huanghe North Street, Shenyang, People's Republic of China.
Objectives: Particulate matter 2.5 (PM2.5), particles with an aerodynamic diameter less than 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!