Recent developments in genetic engineering have established murine models that permit the selective control of cholinergic neurons via optical stimulation. Despite copious benefits granted by these experimental advances, the sensory physiognomy of these organisms has remained poorly understood. Therefore, the present study evaluates sensory and neuronal response properties of animal models developed for the study of optically induced acetylcholine release regulation. Auditory brainstem responses, fluorescence imaging, and patch clamp recording techniques were used to assess the impact of viral infection, sex, age, and anesthetic agents across the ascending auditory pathway of ChAT-Cre and ChAT-ChR2(Ai32) mice. Data analyses revealed that neither genetic configuration nor adeno-associated viral infection alters the early stages of auditory processing or the cellular response properties of cholinergic neurons. However, anesthetic agent and dosage amount profoundly modulate the response properties of brainstem neurons. Last, analyses of age-related hearing loss in virally infected ChAT-Cre mice did not differ from those reported in wild type animals. This investigation demonstrates that ChAT-Cre and ChAT-ChR2(Ai32) mice are viable models for the study of cholinergic modulation in auditory processing, and it emphasizes the need for prudence in the selection of anesthetic procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.24795 | DOI Listing |
Hum Brain Mapp
February 2025
Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands.
Cognitive impairment is considered to be one of the key features of Parkinson's disease (PD), ultimately resulting in PD-related dementia in approximately 80% of patients over the course of the disease. Several distinct cognitive syndromes of PD have been suggested, driven by different neurotransmitter deficiencies and thus requiring different treatment regimes. In this study, we aimed to identify characteristic brain covariance patterns that reveal how cholinergic denervation is related to PD and to cognitive impairment, focusing on four domains, including attention, executive functioning, memory, and visuospatial cognition.
View Article and Find Full Text PDFZool Res
January 2025
School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:
Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).
View Article and Find Full Text PDFCureus
December 2024
Department of Physiology, Touro College of Osteopathic Medicine, Middletown, USA.
Down syndrome (DS) is a genetic intellectual disorder caused by trisomy of chromosome 21 (Hsa21) and presents with a variety of phenotypes. The correlation between the chromosomal abnormality and the resulting symptoms is unclear, partly due to the spectrum of impairments observed. However, it has been determined that trisomy 21 contributes to neurodegeneration and impaired neurodevelopment resulting from decreased neurotransmission, neurogenesis, and synaptic plasticity.
View Article and Find Full Text PDFAcetylcholine modulates the network physiology of the hippocampus, a crucial brain structure that supports cognition and memory formation in mammals . In this and adjacent regions, synchronized neuronal activity within theta-band oscillations (4-10Hz) is correlated with attentive processing that leads to successful memory encoding . Acetylcholine facilitates the hippocampus entering a theta oscillatory regime and modulates the temporal organization of activity within theta oscillations .
View Article and Find Full Text PDFOrganisms have evolved protective strategies that are geared toward limiting cellular damage and enhancing organismal survival in the face of environmental stresses, but how these protective mechanisms are coordinated remains unclear. Here, we define a requirement for neural activity in mobilizing the antioxidant defenses of the nematode both during prolonged oxidative stress and prior to its onset. We show that acetylcholine-deficient mutants are particularly vulnerable to prolonged oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!