One of the most appreciated capabilities of computational toxicology is to support the design of pharmaceuticals with reduced toxicological hazard. To this end, we have strengthened our drug photosafety assessments by applying novel computer models for the anticipation of in vitro phototoxicity and human photosensitization. These models are typically used in pharmaceutical discovery projects as part of the compound toxicity assessments and compound optimization methods. To ensure good data quality and aiming at models with global applicability we separately compiled and curated highly chemically diverse data sets from 3T3 NRU phototoxicity reports (450 compounds) and clinical photosensitization alerts (1419 compounds) which are provided as supplements. The latter data gives rise to a comprehensive list of explanatory fragments for visual guidance, termed phototoxophores, by application of a Bayesian statistics approach. To extend beyond the domain of well sampled fragments we applied machine learning techniques based on explanatory descriptors such as pharmacophoric fingerprints or, more important, accurate electronic energy descriptors. Electronic descriptors were extracted from quantum chemical computations at the density functional theory (DFT) level. Accurate UV/vis spectral absorption descriptors and pharmacophoric fingerprints turned out to be necessary for predictive computer models, which were both derived from Deep Neural Networks but also the simpler Random Decision Forests approach. Model accuracies of 83-85% could typically be reached for diverse test data sets and other company in-house data, while model sensitivity (the capability of correctly detecting toxicants) was even better, reaching 86%-90%. Importantly, a computer model-triggered response-map allowed for graphical/chemical interpretability also in the case of previously unknown phototoxophores. The photosafety models described here are currently applied in a prospective manner for the hazard identification, prioritization, and optimization of newly designed molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.9b00338 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.
View Article and Find Full Text PDFBrain Inform
January 2025
Department of Computing, Glasgow Caledonian University, Glasgow, G4 0BA, Scotland.
A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions.
View Article and Find Full Text PDFBreast Cancer
January 2025
Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
Purpose: The aim of this study was to examine the clinical utility of tumor-infiltrating lymphocytes (TILs) evaluated by "average" and "hot-spot" methods in breast cancer patients.
Methods: We examined 367 breast cancer patients without neoadjuvant chemotherapy (NAC) by average and hot-spot methods to determine the consistency of TIL scores between biopsy and surgical specimens. TIL scores before NAC were also compared with the pathological complete response (pCR) rate and clinical outcomes in 144 breast cancer patients that received NAC.
Eur J Sport Sci
February 2025
School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia.
End-range movements are among the most demanding but least understood in the sport of tennis. Using male Hawk-Eye data from match-play during the 2021-2023 Australian Open tournaments, we evaluated the speed, deceleration, acceleration, and shot quality characteristics of these types of movement in men's Grand Slam tennis. Lateral end-range movements that incorporated a change of direction (CoD) were identified for analysis using k-means (end-range) and random forest (CoD) machine learning models.
View Article and Find Full Text PDFJ Med Syst
January 2025
Department of Computing, University of North Florida, 1 UNF Dr., Jacksonville, 32246, FL, USA.
The "no-show" problem in healthcare refers to the prevalent phenomenon where patients schedule appointments with healthcare providers but fail to attend them without prior cancellation or rescheduling. In addressing this issue, our study delves into a multivariate analysis over a five-year period involving 21,969 patients. Our study introduces a predictive model framework that offers a holistic approach to managing the no-show problem in healthcare, incorporating elements into the objective function that address not only the accurate prediction of no-shows but also the management of service capacity, overbooking, and idle resource allocation resulting from mispredictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!