Small ubiquitin-related modifier (SUMO)-specific protease 2 (SENP2) is essential for the development of healthy placenta. The loss of SENP2 causes severe placental deficiencies and leads to embryonic death that is associated with heart and brain deformities. However, tissue-specific disruption of SENP2 demonstrates its dispensable role in embryogenesis and the embryonic defects are secondary to placental insufficiency. SENP2 regulates SUMO1 modification of Mdm2, which controls p53 activities critical for trophoblast cell proliferation and differentiation. Here we use genetic analyses to examine the involvement of SUMO2 and SUMO3 for SENP2-mediated placentation. The results indicate that hyper-SUMOylation caused by SENP2 deficiency can be compensated by reducing the level of SUMO modifiers. The placental deficiencies caused by the loss of SENP2 can be alleviated by the inactivation of gene encoding SUMO2 or SUMO3. Our findings demonstrate that SENP2 genetically interacts with SUMO2 and SUMO3 pivotal for the development of three major trophoblast layers. The alleviation of placental defects in the SENP2 knockouts further leads to the proper formation of the heart structures, including atrioventricular cushion and myocardium. SUMO2 and SUMO3 modifications regulate placentation and organogenesis mediated by SENP2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027852PMC
http://dx.doi.org/10.1002/dvdy.125DOI Listing

Publication Analysis

Top Keywords

sumo2 sumo3
16
senp2
10
loss senp2
8
placental deficiencies
8
requirement sumo2/3
4
sumo2/3 senp2
4
senp2 mediated
4
mediated extraembryonic
4
extraembryonic embryonic
4
embryonic development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!