cDNA Display: A Stable and Simple Genotype-Phenotype Coupling Using a Cell-Free Translation System.

Methods Mol Biol

Epsilon Molecular Engineering, Inc., Saitama, Japan.

Published: December 2020

A cDNA display method was developed based on the mRNA display method to increase its stability and efficiency for the directed evolution of various kinds of peptides and proteins. In this method, the puromycin-linker is a key molecule to realize smart genotype-phenotype coupling. A recently improved puromycin-linker and its use were explained in detail for the in vitro selection of peptides and proteins using the cDNA display method.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9853-1_3DOI Listing

Publication Analysis

Top Keywords

cdna display
12
display method
12
genotype-phenotype coupling
8
peptides proteins
8
display stable
4
stable simple
4
simple genotype-phenotype
4
coupling cell-free
4
cell-free translation
4
translation system
4

Similar Publications

is an interferon-stimulated gene (ISG) that plays an important role in the congenital antiviral immunity of vertebrates. In this study, the common carp () gene is characterized, and we determine whether it has the ability to inhibit spring viremia of carp virus (SVCV) replication in EPC cells. The results showed that the full-length cDNA of the gene was 1044 bp and it encoded 348 amino acids.

View Article and Find Full Text PDF

Prostate cancer antigen 3 (PCA3) has emerged as a critical biomarker for the early detection of prostate cancer, complementing the traditional prostate-specific antigen (PSA) testing. This research presents a novel resistive sensor based on reduced graphene oxide (RGO) functionalized with glutaraldehyde (GA)/complementary single-stranded DNA (ss-DNA) for the detection of the PCA3 RNA. The device was meticulously characterized at each fabrication step to confirm the successful integration of the various layers on the sensor device, utilizing atomic force microscopy (AFM) which confirmed the increase in the thickness of the sensor from ∼1.

View Article and Find Full Text PDF

Cancer continues to represent a substantial burden in terms of its morbidity and mortality, underscoring the imperative for the development of novel and efficacious treatment modalities. Recent advances in cancer immunotherapy have highlighted the importance of identifying tumour-specific antigens, which can assist the immune system in targeting malignant cells effectively. Phage display technology has emerged as an effective tool for the discovery of novel antigens through cDNA library screening, representing a significant advancement in the field of immunological research.

View Article and Find Full Text PDF

Wheat is an important cereal crop globally and in the United States, and is the largest crop grown by acreage in Colorado. In June 2023, we observed wheat fields displaying severe yellowing and virus-like disease symptoms in plants across seven eastern Colorado counties (Yuma, Prowers, Kit Carson, Washington, Sedgewick, Morgan, and Weld). Symptomatic plants were prominent in fields and appeared bright yellow, with ringspots, mosaic patterning, and streaking on leaves.

View Article and Find Full Text PDF

We report the development and performance of a novel genomics platform, TempO-LINC, for conducting high-throughput transcriptomic analysis on single cells and nuclei. TempO-LINC works by adding cell-identifying molecular barcodes onto highly selective and high-sensitivity gene expression probes within fixed cells, without having to first generate cDNA. Using an instrument-free combinatorial indexing approach, all probes within the same fixed cell receive an identical barcode, enabling the reconstruction of single-cell gene expression profiles across as few as several hundred cells and up to 100,000 + cells per sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!