The Potassium Channel Kv1.5 Expression Alters During Experimental Autoimmune Encephalomyelitis.

Neurochem Res

Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Published: December 2019

Multiple sclerosis (MS) is a chronic, inflammatory, neurodegenerative disease with an autoimmune component. It was suggested that potassium channels, which are involved in crucial biological functions may have a role in different diseases, including MS and its animal model, experimental autoimmune encephalomyelitis (EAE). It was shown that voltage-gated potassium channels Kv1.5 are responsible for fine-tuning in the immune physiology and influence proliferation and differentiation in microglia and astrocytes. Here, we explored the cellular distribution of the Kv1.5 channel, together with its transcript and protein expression in the male rat spinal cord during different stages of EAE. Our results reveal a decrease of Kv1.5 transcript and protein level at the peak of disease, where massive infiltration of myeloid cells occurs, together with reactive astrogliosis and demyelination. Also, we revealed that the presence of this channel is not found in infiltrating macrophages/microglia during EAE. It is interesting to note that Kv1.5 channel is expressed only in resting microglia in the naïve animals. Predominant expression of Kv1.5 channel was found in the astrocytes in all experimental groups, while some vimentin cells, resembling macrophages, are devoid of Kv1.5 expression. Our results point to the possible link between Kv1.5 channel and the pathophysiological processes in EAE.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-019-02892-4DOI Listing

Publication Analysis

Top Keywords

kv15 channel
16
kv15
8
kv15 expression
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
potassium channels
8
transcript protein
8
channel
5
potassium channel
4
channel kv15
4

Similar Publications

Trabectedin modulates macrophage polarization in the tumor-microenvironment. Role of K1.3 and K1.5 channels.

Biomed Pharmacother

May 2023

Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain. Electronic address:

Immune cells have an important role in the tumor-microenvironment. Macrophages may tune the immune response toward inflammatory or tolerance pathways. Tumor-associated macrophages (TAM) have a string of immunosuppressive functions and they are considered a therapeutic target in cancer.

View Article and Find Full Text PDF

Sigma-1 receptor modulation fine-tunes K1.5 channels and impacts pulmonary vascular function.

Pharmacol Res

March 2023

Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain. Electronic address:

K1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve K1.

View Article and Find Full Text PDF

Pseudosaccharin amines as potent and selective KV1.5 blockers.

Bioorg Med Chem Lett

November 2015

Bristol-Myers Squibb Research and Development, PO Box 5400, Princeton, NJ 08534-5400, USA.

Phenethyl aminoheterocycles like compound 1 were known to be potent I(Kur) blockers although they lacked potency in vivo. Modification of the heterocycle led to the design and synthesis of pseudosaccharin amines. Compounds such as 14, 17d and 21c were found to be potent K(V)1.

View Article and Find Full Text PDF

Design, synthesis and evaluation of phenethylaminoheterocycles as K(v)1.5 inhibitors.

Bioorg Med Chem Lett

July 2014

Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, PO Box 5400, Princeton, NJ 08534-5400, USA.

Phenethylaminoheterocycles have been prepared and assayed for inhibition of the Kv1.5 potassium ion channel as a potential approach to the treatment of atrial fibrillation. A diverse set of heterocycles were identified as potent Kv1.

View Article and Find Full Text PDF

Multiple mRNA isoforms encoding the mouse cardiac Kv1-5 delayed rectifier K+ channel.

J Biol Chem

November 1993

Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.

Article Synopsis
  • Researchers cloned the mouse Kv1-5 K+ channel cDNA from heart tissue, finding high expression in the heart and lower levels in the brain and thymus.
  • Two isoforms were identified: a longer one with 602 amino acids and a shorter variant (Kv1-5 delta 5') missing the first 200 amino acids due to splicing.
  • Both isoforms were present in various mouse tissues, with the longer form being more common; the carboxyl-terminal truncated form (Kv1-5 delta 3') was found to be nonfunctional but inhibited the longer isoform's expression.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!