Previous animal experiments have suggested that electrical impedance tomography (EIT) has the ability to noninvasively track changes in cardiac stroke volume (SV). The present study intended to reproduce these findings in patients during a fluid challenge. In a prospective observational study including critically ill patients on mechanical ventilation, SV was estimated via ECG-gated EIT before and after a fluid challenge and compared to transpulmonary thermodilution reference measurements. Relative changes in EIT-derived cardiosynchronous impedance changes in the heart ([Formula: see text]) and lung region ([Formula: see text]) were compared to changes in reference SV by assessing the concordance rate (CR) and Pearson's correlation coefficient (R). We compared 39 measurements of 20 patients. [Formula: see text] did not show to be a reliable estimate for tracking changes of SV (CR = 52.6% and R = 0.13 with P = 0.44). In contrast, [Formula: see text] showed an acceptable trending performance (CR = 94.4% and R = 0.72 with P < 0.0001). Our results indicate that ECG-gated EIT measurements of [Formula: see text] are able to noninvasively monitor changes in SV during a fluid challenge in critically ill patients. However, this was not possible using [Formula: see text]. The present approach is limited by the influences induced by ventilation, posture or changes in electrode-skin contact and requires further validation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10877-019-00402-zDOI Listing

Publication Analysis

Top Keywords

[formula text]
16
stroke volume
8
critically ill
8
ill patients
8
electrical impedance
8
impedance tomography
8
fluid challenge
8
changes
6
noninvasive measurement
4
measurement stroke
4

Similar Publications

Little is known about the influence of fatigue in repeated overground sprinting on force-velocity properties in children and adolescents, while this ability to repeat sprints is important for future progress in rugby union. Sprint time decline is commonly used to assess fatigability. However, it does not provide data on biomechanical aspects of sprint performance such as maximal power, force, and velocity production.

View Article and Find Full Text PDF

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr.

View Article and Find Full Text PDF

Compartmental Models Driven by Renewal Processes: Survival Analysis and Applications to SVIS Epidemic Models.

Sci Rep

January 2025

Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, 1120, 15th Street, Augusta, GA, 30912, USA.

Compartmental models with exponentially distributed lifetime stages assume a constant hazard rate, limiting their scope. This study develops a theoretical framework for systems with general lifetime distributions, modeled as transition rates in a renewal process. Applications are provided for the SVIS (Susceptible-Vaccinated-Infected-Susceptible) disease epidemic model to investigate the impacts of hazard rate functions (HRFs) on disease control.

View Article and Find Full Text PDF

Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper [Formula: see text]1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!