Plant species of semi-natural grasslands are threatened by several simultaneous global change drivers, most notably land-use and climate change. In this study, we explore spatiotemporal variation and changes in deterministic (λ) and stochastic population growth rates (λ), and the underlying vital rates of eight populations of Arnica montana at the species' north-western range margin in Norway. We assess to what extent variation in the demographic rates could be attributed to environmental correlates of the key global change drivers likely to operate at the range edge, including population size, surrogates of habitat quality, temperature and precipitation. We found no relationship between λ and population size or habitat quality, but λ declined in response to both increasing precipitation and increasing temperature. Life-table response experiments revealed that the temporal variability was driven by survival and clonality, whereas the spatial variation was driven by clonality. Our results suggest that A. montana has a threshold response to increasing precipitation, likely due to adaptations to local climatic conditions. Growth and flowering were both negatively affected by increasing temperature, but these effects had a low influence on the spatiotemporal variability in λ. In contrast, the stochastic growth rate was negatively influenced by climate change, indicating an increased extinction risk for marginal populations, possibly leading to range contraction of A. montana as climate change proceeds. Altogether, our study illustrates how the fates of peripheral populations, which are critically important in species range dynamics, may be affected by both deterministic and stochastic effects of multiple coinciding global change drivers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-019-04519-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!