Seven novel alleles of SBEIIb and one allele of SSIIa co-segregated with the ASV phenotype and contributed to distinct starch quality traits important for food-processing applications. Sorghum is an important food crop for millions of people in Africa and Asia. Whole-genome re-sequencing of sorghum EMS mutants exhibiting an alkali spreading value (ASV) phenotype revealed candidate SNPs in Sobic.004G163700 and Sobic.010G093400. Comparative genomics identified Sobic.010G093400 as a starch synthase IIa and Sobic.004G163700 as a starch branching enzyme IIb. Segregation analyses showed that mutations in Sobic.010G093400 or Sobic.004G163700 co-segregated with the ASV phenotype. Mutants in SSIIa exhibited no change in amylose content but expressed lower final viscosity and lower starch gelatinization temperature (GT) than starches from non-mutant plants. The sbeIIb mutants exhibited significantly higher amylose levels and starch GT and lower viscosity compared to non-mutant starches and ssIIa mutants. Mutations in SBEIIb had a dosage-dependent effect on amylose content. Double mutants of sbeIIb and ssIIa resembled their sbeIIb parent in amylose content, starch thermal properties and viscosity profiles. These variants will provide opportunities to produce sorghum varieties with modified starch end-use qualities important for the beer brewing and baking industries and specialty foods for humans with diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820604PMC
http://dx.doi.org/10.1007/s00122-019-03430-0DOI Listing

Publication Analysis

Top Keywords

asv phenotype
12
amylose content
12
sbeiib ssiia
8
alkali spreading
8
starch
8
thermal properties
8
co-segregated asv
8
sbeiib
6
ssiia
5
mutants
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!