Potassium (K+) is an essential cation in all organisms that influences crop production and ecosystem stability. Although most soils are rich in K minerals, relatively little K+ is present in forms that are available to plants. Moreover, leaching and run-off from the upper soil layers contribute to K+ deficiencies in agricultural soils. Hence, the demand for K fertilizer is increasing worldwide. K+ regulates multiple processes in cells and organs, with K+ deficiency resulting in decreased plant growth and productivity. Here, we discuss the complexity of the reactive oxygen species-calcium-hormone signalling network that is responsible for the sensing of K+ deficiency in plants, together with genetic approaches using K+ transporters that have been used to increase K+ use efficiency (KUE) in plants, particularly under environmental stress conditions such as salinity and heavy metal contamination. Publicly available rice transcriptome data are used to demonstrate the two-way relationship between K+ and nitrogen nutrition, highlighting how each nutrient can regulate the uptake and root to shoot translocation of the other. Future research directions are discussed in terms of this relationship, as well as prospects for molecular approaches for the generation of improved varieties and the implementation of new agronomic practices. An increased knowledge of the systems that sense and take up K+, and their regulation, will not only improve current understanding of plant K+ homeostasis but also facilitate new research and the implementation of measures to improve plant KUE for sustainable food production.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erz458DOI Listing

Publication Analysis

Top Keywords

emerging concepts
4
concepts potassium
4
potassium homeostasis
4
plants
4
homeostasis plants
4
plants potassium
4
potassium essential
4
essential cation
4
cation organisms
4
organisms influences
4

Similar Publications

Background: Three-dimensional (3D) visualization has become increasingly prevalent in orthopedic education to tackle the distinct anatomical challenges of the field. However, there is a conspicuous lack of systematic reviews that thoroughly evaluate both the advantages and drawbacks of integrating 3D with problem-based learning (3D + PBL).

Methods: A rigorous search of English databases (Cochrane Library, Embase, PubMed, Scopus, and Web of Science) and Chinese databases (National Knowledge Infrastructure: CNKI, Chongqing VIP: VIP, and Wan Fang) were performed up to July 2024 to identify relevant studies.

View Article and Find Full Text PDF

Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain.

View Article and Find Full Text PDF

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Background: The concept of the metaverse is a virtual world that immerses users, allowing them to interact with the digital environment. Due to metaverse's utility in collaborative and immersive simulation, it can be advantageous for medical education in high-stakes care settings such as emergency, critical, and acute care. Consequently, there has been a growth in educational metaverse use, which has yet to be characterized alongside other simulation modalities literature.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are a part of a cell-to-cell communication system of prokaryotic and eukaryotic organisms. Their ability to penetrate biological barriers and to transfer molecules between cells shows their potential as a novel class of drug delivery platform. However, because of the great heterogeneity of EVs and the complexity of biological matrices from which they are typically isolated, reliable quality control procedures need to be established to ensure their safety for medical use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!