Tools for fundamental analysis functions of TCR repertoires: a systematic comparison.

Brief Bioinform

State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

Published: September 2020

The full set of T cell receptors (TCRs) in an individual is known as his or her TCR repertoire. Defining TCR repertoires under physiological conditions and in response to a disease or vaccine may lead to a better understanding of adaptive immunity and thus has great biological and clinical value. In the past decade, several high-throughput sequencing-based tools have been developed to assign TCRs to germline genes and to extract complementarity-determining region 3 (CDR3) sequences using different algorithms. Although these tools claim to be able to perform the full range of fundamental TCR repertoire analyses, there is no clear consensus of which tool is best suited to particular projects. Here, we present a systematic analysis of 12 available TCR repertoire analysis tools using simulated data, with an emphasis on fundamental analysis functions. Our results shed light on the detailed functions of TCR repertoire analysis tools and may therefore help researchers in the field to choose the right tools for their particular experimental design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947996PMC
http://dx.doi.org/10.1093/bib/bbz092DOI Listing

Publication Analysis

Top Keywords

tcr repertoire
16
fundamental analysis
8
analysis functions
8
functions tcr
8
tcr repertoires
8
repertoire analysis
8
analysis tools
8
tools
6
tcr
6
analysis
5

Similar Publications

Tumor infiltration of inactive CD8 + T cells was associated with poor prognosis in Gastric Cancer.

Gastric Cancer

December 2024

Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.

Background: Gastric cancer (GC) shows limited response to immune checkpoint inhibitors due to its complex tumor immune microenvironment (TIME). This study explores the functions of various immune cells in the complex TIME in GC.

Methods: We assessed CD8 + T-cell infiltration of GC tissues by immunohistochemistry, and performed single-cell RNA sequencing (scRNA-seq) of tumor and normal tissues from 34 patients with GC.

View Article and Find Full Text PDF

Introduction: Despite significant successes, immune checkpoint blockade fails to achieve clinical responses in a significant proportion of patients, predictive markers for responses are imperfect and immune-related adverse events (irAEs) are unpredictable. We used T-cell receptor (TCR) sequencing to systematically analyze prospectively collected patient blood samples from a randomized clinical trial of dual immune checkpoint inhibitor therapy to evaluate changes in the T-cell repertoire and their association with response and irAEs.

Methods: Patients with immunotherapy-naïve metastatic non-small cell lung cancer (NSCLC) were treated with ipilimumab and nivolumab according to trial protocol (LONESTAR, NCT03391869).

View Article and Find Full Text PDF

Introduction: Despite improvements in the treatment of acute ischemic stroke (AIS), some patients still suffer from functional impairments, indicating the poor understanding of pathophysiologic process of AIS. Inflammation plays an important role in the pathophysiology of AIS. The purpose of the study was to investigate the peripheral inflammation in different subtypes of AIS.

View Article and Find Full Text PDF

Cracking the code of adaptive immunity: The role of computational tools.

Cell Syst

December 2024

Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA. Electronic address:

In recent years, the advances in high-throughput and deep sequencing have generated a diverse amount of adaptive immune repertoire data. This surge in data has seen a proportional increase in computational methods aimed to characterize T cell receptor (TCR) repertoires. In this perspective, we will provide a brief commentary on the various domains of TCR repertoire analysis, their respective computational methods, and the ongoing challenges.

View Article and Find Full Text PDF

The Tumor Microenvironment (TME) in classical Hodgkin Lymphoma (HL) contains abundant immune cells and only few neoplastic Hodgkin and Reed-Sternberg cells (HRSC). We analyzed the T-cell receptor (TCR) repertoire to detect T-cell expansion in the TME and blood. In contrast to solid cancer tissue, T-cells in the TME of HL are highly polyclonal at first diagnosis and show only minor clonal expansion during anti-PD1 immune checkpoint blockade (ICB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!