Understanding the distribution and composition of soil microbes in bare patches is a critical step to improving ecological remediation. The effects of different vegetative restoration types on soil microbes within semi-arid bare patches remain unclear. Here, we evaluated the distribution of soil fungi and bacteria among different ecological restoration types at the southern Taihang Mountains. Analysis of variance showed that the chemical properties of soil with vegetation cover have higher nutrient quality than those of the exposed soil. The results also suggested that vegetative restoration significantly improved the diversity and the richness of the soil fungal and bacterial communities. Sequencing results showed that Ascomycota and Basidiomycota were the main soil fungal communities, whereas Proteobacteria, Acidobacteria, and Actinobacteria were the main soil bacterial communities. There were significant relationships between the contents of moisture, organic matter and organic carbon and the soil fungal/bacterial communities. Venn and network diagrams indicated that the vegetative restoration types largely influenced the soil fungi and weakly influenced the soil bacteria in the bare patches. This study discusses the importance of vegetative restoration in the ecological remediation of bare patches. These findings provide effective references for soil restorative measures, water conservation, and bare-spot reduction at the southern Taihang Mountains in future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787810 | PMC |
http://dx.doi.org/10.1002/ece3.5564 | DOI Listing |
Sci Total Environ
January 2025
Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of Chin), Gongzhuling 136100, Jilin, China. Electronic address:
Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:
Populus tomentosa, a deciduous tree species distinguished by its significant economic and ecological value, enjoys a wide-ranging natural distribution. However, its long juvenile period severely restricts the advancement of breeding work. The SPL gene family, a distinctive class of transcription factors exclusive to the plant kingdom, is critical in various processes of plant growth and development.
View Article and Find Full Text PDFBMC Biol
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: The complete mitochondrial respiratory chain is a precondition for maintaining cellular energy supply, development, and metabolic balance. Due to the evolutionary differentiation of complexes and the semi-autonomy of mitochondria, respiratory chain subunits have become critical targets for crop improvement and fungal control. In fungi, mitochondrial complex I mediates growth and metabolism.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
With global climate change, understanding how conifers manage seasonal dormancy is increasingly important. This study explores the physiological and molecular processes controlling dormancy transitions in P. tabuliformis, a key species in northern China.
View Article and Find Full Text PDFPhotosynthetica
August 2024
Capixaba Institute for Research, Technical Assistance and Rural Extension, BR 101 North, Km 151, P.O. Box 62, Linhares, Espírito Santo, Brazil.
This study investigated the effects of recurrent water deficit on drought tolerance traits in black pepper ( L.) 'Bragantina'. Plants were subjected to three cycles of water deficit followed by recovery periods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!