We hypothesized that population diversities of partners in nitrogen-fixing rhizobium-legume symbiosis can be matched for "interplaying" genes. We tested this hypothesis using data on nucleotide polymorphism of symbiotic genes encoding two components of the plant-bacteria signaling system: (a) the rhizobial A acyltransferase involved in the fatty acid tail decoration of the Nod factor (signaling molecule); (b) the plant receptor required for Nod factor binding. We collected three wild-growing legume species together with soil samples adjacent to the roots from one large 25-year fallow: , , and nodulated by one of the two biovars ( and ). For each plant species, we prepared three pools for DNA extraction and further sequencing: the plant pool (30 plant indiv.), the nodule pool (90 nodules), and the soil pool (30 samples). We observed the following statistically significant conclusions: (a) a monotonic relationship between the diversity in the plant gene pools and the nodule rhizobial A gene pools; (b) higher topological similarity of the gene tree with the A gene tree of the nodule pool, than with the A gene tree of the soil pool. Both nonsynonymous diversity and Tajima's were increased in the nodule pools compared with the soil pools, consistent with relaxation of negative selection and/or admixture of balancing selection. We propose that the observed genetic concordance between gene pools and nodule A gene pools arises from the selection of particular genotypes of the A gene by the host plant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787799PMC
http://dx.doi.org/10.1002/ece3.5556DOI Listing

Publication Analysis

Top Keywords

gene pools
16
gene tree
12
nod factor
8
nodule pool
8
soil pool
8
gene
8
pools nodule
8
pools
7
plant
6
pool
5

Similar Publications

Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.

View Article and Find Full Text PDF

Mapping the 3D genome architecture.

Comput Struct Biotechnol J

December 2024

Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

The spatial organization of the genome plays a critical role in regulating gene expression, cellular differentiation, and genome stability. This review provides an in-depth examination of the methodologies, computational tools, and frameworks developed to map the three-dimensional (3D) architecture of the genome, focusing on both ligation-based and ligation-free techniques. We also explore the limitations of these methods, including biases introduced by restriction enzyme digestion and ligation inefficiencies, and compare them to more recent ligation-free approaches such as Genome Architecture Mapping (GAM) and Split-Pool Recognition of Interactions by Tag Extension (SPRITE).

View Article and Find Full Text PDF

Persistent, Private and Mobile genes: a model for gene dynamics in evolving pangenomes.

Mol Biol Evol

January 2025

Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France.

The pangenome of a species is the set of all genes carried by at least one member of the species. In bacteria, pangenomes can be much larger than the set of genes carried by a single organism. Many questions remain unanswered regarding the evolutionary forces shaping the patterns of presence/absence of genes in pangenomes of a given species.

View Article and Find Full Text PDF

Draft genome dataset of strain R-35 isolated from tidal pool sediments.

Data Brief

February 2025

Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, Cape Town, 7530, South Africa.

The marine isolate, strain R-35, was isolated from marine sediments collected from the Glencairn Tidal Pool, Table Mountain National Park, Cape Town, South Africa. The genomic DNA was sequenced using the Ion Torrent GeneStudio™ S5 platform, and the assembly was performed using the SPAdes assembler on the Centre for High Performance Computing (CHPC) Lengau Cluster located at the CSIR, Rosebank, South Africa. The draft genome assembly consisted of 722 contigs totaling 7,625,174 base pairs and a G+C% content of 72.

View Article and Find Full Text PDF

Exploring gut microbiota as a novel therapeutic target in Crohn's disease: Insights and emerging strategies.

World J Gastroenterol

January 2025

College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China.

Extensive research has investigated the etiology of Crohn's disease (CD), encompassing genetic predisposition, lifestyle factors, and environmental triggers. Recently, the gut microbiome, recognized as the human body's second-largest gene pool, has garnered significant attention for its crucial role in the pathogenesis of CD. This paper investigates the mechanisms underlying CD, focusing on the role of 'creeping fat' in disease progression and exploring emerging therapeutic strategies, including fecal microbiota transplantation, enteral nutrition, and therapeutic diets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!