Background: Peri-prosthetic bone loss can result from chemical, biological, and mechanical factors. Mechanical stimulation via fluid pressure and flow at the bone-implant interface may be a significant cause. Evidence supporting mechanically induced osteolysis continues to grow, but there is no synthesis of published clinical and basic science data.

Questions/purposes: We sought to review the literature on two questions: (1) What published evidence supports the concept of mechanically induced osteolysis? (2) What is the proposed mechanism of mechanically induced osteolysis, and does it differ from that of particle-induced osteolysis?

Methods: A systematic review was performed of the PubMed and Web of Science databases. Additional relevant articles were recommended by the senior authors based on their expert opinion. Abstracts were reviewed and the manuscripts pertaining to the study questions were read in full. Studies showing support of mechanically induced osteolysis were quantified and findings summarized.

Results: We identified 49 articles of experimental design supporting the hypothesis that mechanical stimulation of peri-prosthetic bone from fluid pressure and flow can induce osteolysis. While the molecular mechanisms may overlap with those implicated in particle-induced osteolysis, mechanically induced osteolysis appears to be mediated by distinct and parallel pathways.

Conclusions: The role of mechanical stimuli is increasingly recognized in the pathogenesis of peri-prosthetic osteolysis. Current research aims to elucidate the molecular mechanisms to better target therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778158PMC
http://dx.doi.org/10.1007/s11420-018-9641-5DOI Listing

Publication Analysis

Top Keywords

mechanically induced
24
induced osteolysis
16
osteolysis
8
systematic review
8
peri-prosthetic bone
8
mechanical stimulation
8
fluid pressure
8
pressure flow
8
molecular mechanisms
8
mechanically
6

Similar Publications

Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.

View Article and Find Full Text PDF

Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.

View Article and Find Full Text PDF

Background/objectives: Effectively targeting treatment-resistant tumor cells, particularly cancer stem cells (CSCs) involved in tumor recurrence, remains a major challenge in immunotherapy. This study examines the potential of combining mechanical high-intensity focused ultrasound (M-HIFU) with dendritic cell (DC) vaccines to enhance immune responses against OLFM4-expressing tumors, a CSC marker linked to immune evasion and tumor growth.

Methods: M-HIFU was applied to induce immunogenic cell death by mechanically disrupting tumor cells, releasing tumor-associated antigens and creating an immunostimulatory environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!