Background: The rapid identification of lineage remains a challenge in the genotyping of clinical isolates of recombinogenic pathogens. The chromosome of Mycobacterium avium subsp. hominissuis (MAH), an agent of Mycobacterium avium complex (MAC) lung disease, is often mosaic and is composed of chromosomal segments originating from different lineages. This makes it difficult to infer the MAH lineage in a simple experimental set-up. To overcome this difficulty, we sought to identify chromosomal marker genes containing lineage-specific alleles by genome data mining.
Results: We conducted genetic population structure analysis, phylogenetic analysis, and a survey of historical recombination using data from 125 global MAH isolates. Six MAH lineages (EA1, EA2, SC1, SC2, SC3, and SC4) were identified in the current dataset. One P-450 gene (locus_tag MAH_0788/MAV_0940) in the recombination-cold region was found to have multiple alleles that could discriminate five lineages. By combining the information about allele type from one additional gene, the six MAH lineages as well as other M. avium subspecies were distinguishable. A recombination-cold region of 116 kb contains an insertion hotspot and is flanked by a mammalian cell-entry protein operon where allelic variants have previously been reported to occur. Hence, we speculate that the acquisition of lineage- or strain-specific insertions has introduced homology breaks in the chromosome, thereby reducing the chance of interlineage recombination.
Conclusions: The allele types of the newly identified marker genes can be used to predict major lineages of M. avium. The single nucleotide polymorphism typing approach targeting multiallelic loci in recombination-cold regions will facilitate the epidemiological study of MAC, and may also be useful for equivalent studies of other nontuberculous mycobacteria potentially carrying mosaic genomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798384 | PMC |
http://dx.doi.org/10.1186/s12864-019-6078-2 | DOI Listing |
Theor Appl Genet
November 2024
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
A major locus for spike compactness and length was mapped on chromosome 7H and its pleiotropic effects, candidate genes and transcriptional regulatory network were analyzed. Spike compactness (SC) and length (SL) are important traits of barley (Hordeum vulgare L.) due to their close association with grain yield.
View Article and Find Full Text PDFMol Ecol
May 2024
Department of Biology, Washington University, St. Louis, Missouri, USA.
Research conducted during the past two decades has demonstrated that biological invasions are excellent models of rapid evolution. Even so, characteristics of invasive populations such as a short time for recombination to assemble optimal combinations of alleles may occasionally limit adaptation to new environments. Here, we investigated such genetic constraints to adaptation in the invasive brown anole (Anolis sagrei)-a tropical ectotherm that was introduced to the southeastern United States, a region with a much colder climate than in its native Caribbean range.
View Article and Find Full Text PDFPlant Biotechnol J
February 2023
School of Biological Sciences, Life Sciences, University of Bristol, Bristol, UK.
Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Speciation is the process by which barriers to gene flow evolve between populations. Although we now know that speciation is largely driven by natural selection, knowledge of the agents of selection and the genetic and genomic mechanisms that facilitate divergence is required for a satisfactory theory of speciation. In this essay, we highlight three advances/problems in our understanding of speciation that have arisen from studies of the genes and genomic regions that underlie the evolution of reproductive isolation.
View Article and Find Full Text PDFNat Plants
May 2021
Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Plant breeding relies on the presence of genetic variation, as well as on the ability to break or stabilize genetic linkages between traits. The development of the genome-editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) has allowed breeders to induce genetic variability in a controlled and site-specific manner, and to improve traits with high efficiency. However, the presence of genetic linkages is a major obstacle to the transfer of desirable traits from wild species to their cultivated relatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!