Inertial measurement unit-based hip flexion test as an indicator of sprint performance.

J Sports Sci

Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.

Published: January 2020

This study aimed 1) to examine the validity of inertial measurement unit (IMU)-based hip flexion strength test, and 2) to investigate the hip flexion strength test as an indicator of sprint performance. Eight males performed five repeated hip flexion-extension, while leg motion was recorded using an IMU and a motion capture system (Mocap). As the second experiment, 24 male athletes performed the IMU-based hip flexion strength test and sprinted 50 m, during which step-to-step ground reaction force (GRF) was recorded. The strength test variables were calculated using IMU and Mocap data including angular impulse, mean moment, and positive and negative work and power. Using GRF data, step-to-step spatiotemporal variables were obtained. The results showed high intra-class correlation coefficient and correlation coefficient (both >0.909) between IMU and Mocap for angular impulse, mean moment, positive work and power. The hip flexion mean moment showed significant correlation with running speed from the 5th-8th step section onwards. The angular impulse, mean moment, positive work and power are recommended to be used for the IMU-based hip flexion strength test variables in terms of accuracy and validity. Moreover, the proposed IMU-based hip flexion strength test can be an indicator for better sprinting performance.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640414.2019.1680081DOI Listing

Publication Analysis

Top Keywords

hip flexion
28
strength test
24
flexion strength
20
imu-based hip
16
test indicator
12
angular impulse
12
impulse moment
12
moment positive
12
work power
12
inertial measurement
8

Similar Publications

Knee osteoarthritis (KOA) can have more pronounced effects on joint position sense (JPS) accuracy and gait characteristics. The aim of this study is to investigate the association between lower limb JPS and different aspects of gait pattern including gait asymmetry and variability and spatiotemporal coordination in individuals with bilateral KOA. In this cross-sectional study, lower limb JPS of 43 individuals with bilateral KOA (mild and moderate) were measured.

View Article and Find Full Text PDF

A Faster Walking Speed Is Important for Improving Biomechanical Function and Walking Performance.

J Appl Biomech

January 2025

Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.

This study compares joint kinematics and kinetics of young stroke survivors who walk <0.79 m/s (slow) or >0.80 m/s (fast) with reference to a healthy able-bodied group and provides clinical recommendations for guiding the gait rehabilitation of stroke survivors.

View Article and Find Full Text PDF

Exploratory analysis of gait mechanics in farmers.

J Occup Environ Hyg

January 2025

Department of Kinesiology & Health Promotion, University of Kentucky, Lexington, Kentucky.

Farmers may be at a higher risk of developing hip osteoarthritis (OA) due to the high demands of their occupation. To the authors' knowledge, the gait patterns of farmers that may be associated with hip joint degeneration have yet to be analyzed. Therefore, this study compares gait mechanics between farmers and non-farmers (controls).

View Article and Find Full Text PDF

Predicting prosthetic gait and the effects of induced stiff-knee gait.

PLoS One

January 2025

Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover Medical School, Hannover, Germany.

Prosthetic gait differs considerably from the unimpaired gait. Studying alterations in the gait patterns could help to understand different adaptation mechanisms adopted by these populations. This study investigated the effects of induced stiff-knee gait (SKG) on prosthetic and healthy gait patterns and the capabilities of predictive simulation.

View Article and Find Full Text PDF

Background: Patients with transfemoral amputation experience socket-related problems and musculoskeletal overuse injuries, both of which are exacerbated by asymmetric joint loading and alignment. Bone-anchored limbs are a promising alternative to treat chronic socket-related problems by directly attaching the prosthesis to the residual limb through an osseointegrated implant; however, it remains unknown how changes in alignment facilitated through a bone-anchored limb relate to loading asymmetry.

Questions/purposes: What is the association between femur-pelvis alignment and hip loading asymmetry during walking before and 12 months after transfemoral bone-anchored limb implantation?

Methods: Between 2019 and 2022, we performed 66 bone-anchored limb implantation surgeries on 63 individuals with chronic socket-related problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!