Deposition Kinetics of Thin Silica-Like Coatings in a Large Plasma Reactor.

Materials (Basel)

Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.

Published: October 2019

An industrial size plasma reactor of 5 m volume was used to study the deposition of silica-like coatings by the plasma-enhanced chemical vapor deposition (PECVD) method. The plasma was sustained by an asymmetrical capacitively coupled radio-frequency discharge at a frequency of 40 kHz and power up to 7 kW. Hexamethyldisilioxane (HMDSO) was introduced continuously at different flows of up to 200 sccm upon pumping with a combination of roots and rotary pumps at an effective pumping speed between 25 and 70 L/s to enable suitable gas residence time in the plasma reactor. The deposition rate and ion density were measured continuously during the plasma process. Both parameters were almost perfectly constant with time, and the deposition rate increased linearly in the range of HMDSO flows from 25 to 160 sccm. The plasma density was of the order of 10 m, indicating an extremely low ionization fraction which decreased with increasing flow from approximately 2 × 10 to 6 × 10. The correlations between the processing parameters and the properties of deposited films are drawn and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803826PMC
http://dx.doi.org/10.3390/ma12193238DOI Listing

Publication Analysis

Top Keywords

plasma reactor
12
silica-like coatings
8
deposition rate
8
plasma
6
deposition
5
deposition kinetics
4
kinetics thin
4
thin silica-like
4
coatings large
4
large plasma
4

Similar Publications

Toward Green Liquid Nitrogen Fertilizer Synthesis: Plasma-Driven Nitrogen Oxidation and Partial Electrocatalytic Reduction.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Liquid fertilizers, particularly when integrated with precision irrigation systems, offer a more efficient and sustainable alternative to traditional solid nitrogen fertilizers. The industrial production of ammonium nitrate (NHNO) is environmentally detrimental due to its reliance on fossil fuels. This study introduces an innovative air-to-NOx-to-NHNO pathway for synthesizing liquid nitrogen fertilizer.

View Article and Find Full Text PDF

This paper introduces a novel, compact plasma sterilization system, the Active Plasma Sterilizer (APS), for planetary protection space missions. The development of the APS system is done through iterative testing and design modifications aimed at addressing decontamination modalities for time and temperature, cleaning adhesive surfaces, and cleaning protocols beyond alcohol and bleach. Decontamination testing of Deinococcus radiodurans, Geobacillus stearothermophilus (spore forming bacteria), and Aspergillus fumigatus (fungi) was verified for the APS on relevant materials of 4 to 5 log reduction up to complete killing in 45 min or less.

View Article and Find Full Text PDF

The use of metal oxide catalysts to enhance plasma CO reduction has seen significant recent development towards processes to reduce greenhouse gas emissions and produce renewable chemical feedstocks. While plasma reactors are effective at producing the intended chemical transformations, the conditions can result in catalyst degradation. Atomic layer deposition (ALD) can be used to synthesize complex, hierarchically structured metal oxide plasma catalysts that, while active for plasma CO reduction, are potentially vulnerable to degradation due to their high surface area and nanoscopic thickness.

View Article and Find Full Text PDF

Ammonia is a promising alternative energy to fossil fuels for reducing CO emissions. Plasma catalysis technology for ammonia production using clean energy is gaining attention. Introducing catalysts to the plasma increases ammonia synthesis rates, but the effect of catalyst particle movement in the plasma region, such as in a fluidized-bed reactor, is less explored.

View Article and Find Full Text PDF

The self-passivating tungsten-based alloy W-11.4Cr-0.6Y (in wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!