Love Wave Surface Acoustic Wave Sensor with Laser-Deposited Nanoporous Gold Sensitive Layer.

Sensors (Basel)

National Institute for Laser, Plasma and Radiation Physics, Laser Department, Atomistilor #409, 077125 Bucharest-Magurele, Romania.

Published: October 2019

Laser-deposited gold immobilization layers with different porosities were incorporated into Love Wave Surface Acoustic Wave sensors (LW-SAWs). Acetylcholinesterase (AChE) enzyme was immobilized onto three gold interfaces with different morphologies, and the sensor response to chloroform was measured. The response of the sensors to various chloroform concentrations indicates that their sensing properties (sensitivity, limit of detection) are considerably improved when the gold layers are porous, in comparison to a conventional dense gold layer. The results obtained can be used to improve properties of SAW-based biosensors by controlling the nanostructure of the gold immobilization layer, in combination with other enzymes and proteins, since the design of the present sensor is the same as that for a Love Wave biosensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833045PMC
http://dx.doi.org/10.3390/s19204492DOI Listing

Publication Analysis

Top Keywords

love wave
12
wave surface
8
surface acoustic
8
acoustic wave
8
gold immobilization
8
gold
6
wave
4
wave sensor
4
sensor laser-deposited
4
laser-deposited nanoporous
4

Similar Publications

Real-Time and Ultrasensitive Prostate-Specific Antigen Sensing Using Love-Mode Surface Acoustic Wave Immunosensor Based on MoS@CuO-Au Nanocomposites.

Sensors (Basel)

November 2024

Shenzhen Key Laboratory of Advanced Thin Films and Applications, GuangDong Engineering Technology Research Centre of Breath Test, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Prostate-specific antigen (PSA) is a well-established tumour marker for prostatic carcinoma. In this study, we present a novel, real-time, and ultrasensitive Love-mode surface acoustic wave (L-SAW) immunosensor for PSA detection enhanced by MoS@CuO-Au nanocomposite conjugation. The MoS@CuO-Au nanocomposites were analyzed by SEM, XRD, and EDS.

View Article and Find Full Text PDF

This paper summarizes several attractive surface acoustic wave (SAW) biosensors, including Love-wave sensors, dual-channel SAW sensors, langasite SAW sensors, and SAW syringe filters. SAW sensors with different piezoelectric materials and high-frequency SAW sensors used for identifying the food pathogenic bacteria () are discussed together with the examples of methods based on such sensing technology that have been effectively utilized in diagnostics and epidemiological research. This review also emphasizes some of the limitations of using these biosensors, which have prompted the increased need for more rapid, sensitive, selective, portable, power-efficient, and low-cost methods for detecting these pathogens.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how Love waves, which are a type of seismic wave, behave when triggered by an impulsive line source in layered rock structures common around reservoirs.
  • It derives the dispersion relation for these waves using advanced mathematical techniques such as Fourier transformation and Green's function method.
  • The research looks at the effects of various factors like rock layer properties, porosity, and anisotropy on the phase velocity of Love waves, including graphical representations of the findings.
View Article and Find Full Text PDF

The Spaceborne Global Lightning Location Network (SGLLN) serves the purpose of identifying transient lightning events occurring beneath the ionosphere, playing a significant role in detecting and warning of disaster weather events. To ensure the effective functioning of the wideband electromagnetic pulse detector, which is a crucial component of the SGLLN, it must be tested and verified with specific signals. However, the inherent randomness and unpredictability of lightning occurrences pose challenges to this requirement.

View Article and Find Full Text PDF

Love-mode surface acoustic wave (SAW) sensors show great promise for biodetection applications owing to their low cost, digital output, and wireless passive capability, but their performance is often restricted by the availability of suitable sensitive membrane layers. Herein, a composite layer of electrospun fibers made from cellulose acetate and polyethylenimine, coated with gold nanoparticles, is proposed as a porous and sensitive membrane coated onto a love-mode SAW biosensor for monitoring gene sequences of . The results showed that the developed sensor exhibited an impressive sensitivity of 122.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!