Magnetic particle imaging (MPI) is a new imaging technique that detects the spatial distribution of magnetic nanoparticles (MNP) with the option of high temporal resolution. MPI relies on particular MNP as tracers with tailored characteristics for improvement of sensitivity and image resolution. For this reason, we developed optimized multicore particles (MCP 3) made by coprecipitation via synthesis of green rust and subsequent oxidation to iron oxide cores consisting of a magnetite/maghemite mixed phase. MCP 3 shows high saturation magnetization close to that of bulk maghemite and provides excellent magnetic particle spectroscopy properties which are superior to Resovist and any other up to now published MPI tracers made by coprecipitation. To evaluate the MPI characteristics of MCP 3 two kinds of tube phantoms were prepared and investigated to assess sensitivity, spatial resolution, artifact severity, and selectivity. Resovist was used as standard of comparison. For image reconstruction, the regularization factor was optimized, and the resulting images were investigated in terms of quantifying of volumes and iron content. Our results demonstrate the superiority of MCP 3 over Resovist for all investigated MPI characteristics and suggest that MCP 3 is promising for future experimental in vivo studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835925 | PMC |
http://dx.doi.org/10.3390/nano9101466 | DOI Listing |
Genet Epidemiol
January 2025
Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.
Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.
View Article and Find Full Text PDFRSC Adv
January 2025
The Second Department, Xi' an Modern Chemistry Research Institute Xi'an 710065 China
To fully understand the variation in performance of cyclotrimethylenetrinitramine (RDX) crystals under strong magnetic field exposure, the strong magnetic loading of RDX was conducted in both stable and alternating magnetic fields. The morphological changes of RDX crystals exposed to magnetic fields were studied under a scanning electron microscope. Then, the lattice changes of RDX exposed to magnetic fields were analyzed through X-ray diffraction and Raman spectroscopy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!