In this work we show that ordered freestanding titanium oxide nanotubes (TiO NT) may be used as substrates for the simple and efficient immobilization of anisotropic plasmonic nanoparticles. This is important because anisotropic plasmonic nanostructures usually give greater spectral enhancement than spherical nanoparticles. The size of the pores in a layer of titanium oxide nanotubes can be easily fitted to the size of many silver plasmonic nanoparticles highly active in SERS (surface-enhanced Raman scattering) spectroscopy (for example, silver nanocubes with an edge length of ca. 45 nm), and hence, the plasmonic nanoparticles deposited can be strongly anchored in such a titanium oxide substrate. The tubular morphology of the TiO substrate used allows a specific arrangement of the silver plasmonic nanoparticles that may create many so-called SERS hot spots. The SERS activity of a layer of cubic Ag nanoparticles (AgCNPs) deposited on a tubular TiO substrate (AgCNPs@TiO NT) is about eight times higher than that of the standard electrochemically nanostructured surface of a silver electrode (produced by oxidation reduction cycling). Furthermore, a super hydrophilic character of the TiO nanotubes surface allows for a uniform distribution of AgCNPs, which are deposited from an aqueous suspension. The new AgCNPs@TiO NT hybrid layer ensures a good reproducibility of SERS measurements and exhibits a higher temporal stability of the achievable total SERS enhancement factor-one that is far better than standard SERS silver substrates. To characterize the morphology and chemical composition of such evidently improved SERS platforms thus received, we applied microscopic techniques (SEM, and scanning transmission electron microscopy (STEM)) and surface analytical techniques (Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS)).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6830348 | PMC |
http://dx.doi.org/10.3390/ma12203373 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea.
Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications.
View Article and Find Full Text PDFNanoscale
January 2025
AIT Austrian Institute of Technology, Molecular Diagnostics, 1210 Vienna, Austria.
Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Theoretical Chemical Physics Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.
Rapid advancements in nanotechnology have allowed for the characterization of single molecules by placing them in the vicinity of nanoplasmonic structures that are known to confine light to sub-molecular scales. In this study, we introduce a theoretical framework that captures higher-order effects, and we explore the limits of the standard description of a molecular emitter as a point-dipole. We particularly focus on the role played by the emitter chain length and electron conjugation.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
Analyzing the cell interface is of paramount importance in understanding how cells interact and communicate with other cells, but an advanced analytical platform that can process complex and networked interactions between cell surface ligands and receptors is lacking. Herein, we developed the cell-interface-deciphering lipid nanotablet (CID-LNT) for multiplexed real-time cell analysis. LNT is a nanoparticle-tethered lipid bilayer chip where freely diffusing plasmonic nanoparticles induce scattering signal changes.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 PR China. Electronic address:
Red light emitting perovskite quantum dot (PQD) glass, with narrow-band emission and excellent stability, holds great potential for applications in liquid crystal displays. However, its low photoluminescence quantum yield (PLQY) remains the biggest obstacle limiting its practical application. Additionally, the mechanism behind the enhancement of the PLQY is not well understood, which restricts the further improvement of the PLQY in red light emitting PQD glass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!