Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reactive and stable catalysts for the oxygen reduction reaction are highly desirable for low temperature fuel cells. The commercial oxygen reduction reaction electrocatalysts generally reply on noble metal based nanomaterials, which suffer from inherent cost and selectivity issues. At present, it still remains challenge for designing efficient non-noble metal-based oxygen reduction reaction electrocatalysts. Herein, we successfully synthesize Co nanoparticles supported on three-dimensionally N-doped holey graphene aerogels hybrids by the high-temperature calcination of the graphene aerogels-polyallylamine-Co hybrids. The component optimized hybrids show the excellent electrocatalytic activity for oxygen reduction reaction in alkaline media, which is comparable to commercial Pt/C electrocatalyst. Meanwhile, the hybrids also show eminent tolerance for CO and methanol, attributing to their excellent oxygen reduction reaction selectivity. The three-dimensionally interconnected structure of graphene aerogels, N-doping, uniform dispersion and high crystallinity of Co nanoparticles, and holey structure of graphene contribute to the striking oxygen reduction reaction activity of hybrids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2019.10.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!