Objective: Motivated by the well documented worldwide spread of adverse drug events, as well as the increased danger of antibiotic resistance (caused mainly by inappropriate prescribing and overuse), we propose a novel recommendation system for antibiotic prescription (PARS).
Method: Our approach is based on the combination of semantic technologies with MCDA (Multiple Criteria Decision Aiding) that allowed us to build a two level decision support model. Given a specific domain, the approach assesses the adequacy of an alternative/action (prescription of antibiotic) for a specific subject (patient) with an issue (bacterial infection) in a given context (medical). The goal of the first level of the decision support model is to select the set of alternatives which have the potential to be suitable. Then the second level sorts the alternatives into categories according to their adequacy using an MCDA sorting method (MR-Sort with Veto) and a structured set of description logic queries.
Results: We applied this approach in the domain of antibiotic prescriptions, working closely with the EpiCura Hospital Center (BE). Its performance was compared to the EpiCura recommendation guidelines which are currently in use. The results showed that the proposed system is more consistent in its recommendations when compared with the static EpiCura guidelines. Moreover, with PARS the antibiotic prescribing workflow becomes more flexible. PARS allows the user (physician) to update incrementally and dynamically a patient's profile with more information, or to input knowledge modifications that accommodate the decision context (like the introduction of new side effects and antibiotics, the development of germs that are resistant, etc). At the end of our evaluation, we detail a number of limitations of the current version of PARS and discuss future perspectives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbi.2019.103304 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Power, Adama Science and Technology University, Adama, 1888, Ethiopia.
Although the Transformer architecture has established itself as the industry standard for jobs involving natural language processing, it still has few uses in computer vision. In vision, attention is used in conjunction with convolutional networks or to replace individual convolutional network elements while preserving the overall network design. Differences between the two domains, such as significant variations in the scale of visual things and the higher granularity of pixels in images compared to words in the text, make it difficult to transfer Transformer from language to vision.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic and Information Engineering, Changsha Institute of Technology, Changsha, 410200, China.
In order to solve the limitations of flipped classroom in personalized teaching and interactive effect improvement, this paper designs a new model of flipped classroom in colleges and universities based on Virtual Reality (VR) by combining the algorithm of Contrastive Language-Image Pre-Training (CLIP). Through cross-modal data fusion, the model deeply combines students' operation behavior with teaching content, and improves teaching effect through intelligent feedback mechanism. The test data shows that the similarity between video and image modes reaches 0.
View Article and Find Full Text PDFUnlabelled: We investigated the impact of participation in post-secondary university education (PSE) on the academic knowledge of adult students with severe intellectual disability and extensive support needs (SIDESN) vs. a similar group of controls who did not participate in PSE. We also examined whether the PSE would result in a "near transfer" to basic crystallized (facts and information) and fluid (problems involving executive functions and working memory) cognitive abilities, the contribution of background characteristics and crystallized and fluid abilities to their academic knowledge, semantic fluency and temporal relations.
View Article and Find Full Text PDFSensors (Basel)
January 2025
The 54th Research Institute, China Electronics Technology Group Corporation, College of Signal and Information Processing, Shijiazhuang 050081, China.
The multi-sensor fusion, such as LiDAR and camera-based 3D object detection, is a key technology in autonomous driving and robotics. However, traditional 3D detection models are limited to recognizing predefined categories and struggle with unknown or novel objects. Given the complexity of real-world environments, research into open-vocabulary 3D object detection is essential.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Mechnical and Vehicle Engineering, Hunan University, Changsha 411082, China.
Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!