Nosema bombycis suppresses host hemolymph melanization through secreted serpin 6 inhibiting the prophenoloxidase activation cascade.

J Invertebr Pathol

State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Chongqing Normal University, Chongqing, China.

Published: November 2019

Nosema bombycis is a pathogen of the silkworm that belongs to the microsporidia, a group of obligate intracellular parasites related to fungi. N. bombycis infection causes the disease pébrine in silkworms. Insects utilize hemolymph melanization as part of the innate immune response to fight against pathogens, and melanization relies on a serine protease-mediated prophenoloxidase (PPO) activation cascade that is tightly regulated by serine protease inhibitors (serpins). Previous studies showed that N. bombycis infection suppressed silkworm hemolymph melanization, however the mechanism has not been elucidated. We hypothesize that N. bombycis can secret serpins (NbSPNs) to inhibit host serine proteases in the PPO activation cascade, thus suppressing phenoloxidase (PO) activity and the consequent melanization. We demonstrated in this study that N. bombycis infection suppressed silkworm PO activity and melanization and we identified the expression of N. bombycis serpin 6 (NbSPN6) in the hemolymph of the infected host. When recombinant NbSPN6 was added to normal hemolymph, PO activity was inhibited in a dose-dependent manner. Moreover, in vivo analysis by RNA interference technology showed that when NbSPN6 expression is blocked, the inhibitory effects on PO activity can be reversed and the proliferation of N. bombycis within host can be suppressed. These results demonstrated the indispensable role of NbSPN6 in successful pathogen infection. To further elucidate the molecular basis of NbSPN6 suppressing host defense, we determined that the host serine protease prophenoloxidase-activating enzyme (PPAE) is the direct target of NbSPN6 inhibition. Taken together, our novel study is the first to elucidate the molecular mechanism of pathogen-derived serpin inhibiting hemolymph melanization and, thus, regulating host innate immune responses. This study may also provide novel strategies for preventing microsporidia infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jip.2019.107260DOI Listing

Publication Analysis

Top Keywords

hemolymph melanization
16
activation cascade
12
bombycis infection
12
nosema bombycis
8
serpin inhibiting
8
innate immune
8
ppo activation
8
serine protease
8
infection suppressed
8
suppressed silkworm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!