Epitaxial Bottom-up Growth of Silicon Nanowires on Oxidized Silicon by Alloy-Catalyzed Gas-Phase Synthesis.

Nano Lett

Institute of Micro- and Nanotechnologies, Microsystems Technology Group , Technische Universität Ilmenau, Max-Planck-Ring 12 , 98693 Ilmenau , Germany.

Published: November 2019

High-yield epitaxial bottom-up growth of silicon nanowires is still challenging but desirable for various applications such as antireflective coatings, solar cells, and high-aspect-ratio scanning probes. Hence, pristine single-crystalline silicon surfaces are, in principle, required as a growth substrate, but reoxidation occurring prior to nanowire growth obstructs epitaxial growth significantly. Here, we present an approach that relies on Al/Au alloy catalysts for gas-phase silicon nanowire synthesis, allowing intrinsically an in situ removal of a native silicon-oxide layer during the initial growth stages. This approach yields reliable and superior epitaxial growth of silicon nanowires on single-crystalline silicon substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b02950DOI Listing

Publication Analysis

Top Keywords

growth silicon
12
silicon nanowires
12
epitaxial bottom-up
8
bottom-up growth
8
single-crystalline silicon
8
epitaxial growth
8
growth
7
silicon
7
epitaxial
4
nanowires oxidized
4

Similar Publications

Developing vapor-solid reaction methods to prepare organic-inorganic hybrid perovskite thin films is highly compatible with processes in crystalline silicon solar cells and the thin-film photovoltaic industries, facilitating rapid industrialization. In the vapor-solid reaction, the crystallization quality of perovskite thin films is widely influenced by the crystallinity and microstructure of lead iodide (PbI) precursor films. During the thermal evaporation process of preparing the PbI precursor films, we observed that PbI tends to develop a disordered surface morphology and exhibits high crystallinity, which significantly hinders the uniform diffusion of the organic amine salt vapor during the subsequent vapor-solid reaction.

View Article and Find Full Text PDF

Synthesis of Silicon Dioxide (SiO) Nanowires via a Polyethylene Glycol-Based Emulsion Template Method in Isopropanol.

Nanomaterials (Basel)

February 2025

Zhejiang Fuli Analytical Instrument Co., Ltd., Wenling 317500, China.

Typical wet-chemical methods for the preparation of silica nanowires use polyvinylpyrrolidone and n-pentanol. This study presents a polyethylene glycol-based emulsion template method for the synthesis of SiO nanowires (SiONWs) in isopropanol. By systematically optimizing key parameters (type of solvent, polyethylene glycol molecular weight and dosage, dosage of sodium citrate, ammonium and tetraethyl orthosilicate, incubation temperature and time), SiONWs with diameters about 530 nm were obtained.

View Article and Find Full Text PDF

Memristors have garnered increasing attention in neuromorphic computing hardware due to their resistive switching characteristics. However, achieving uniformity across devices and further miniaturization for large-scale arrays remain critical challenges. In this study, we demonstrate the scalable production of highly uniform, quasi-one-dimensional diffusive memristors based on heavily doped n-type silicon nanowires (SiNWs) with diameters as small as ∼50 nm, fabricated via in-plane solid-liquid-solid (IPSLS) growth technology.

View Article and Find Full Text PDF

To investigate the influence of the fractured rock-concrete interface on the mechanical response of the rock mass and engineering, the mechanical properties and energy evolution of granite-concrete composite specimens with 16 different fracture inclinations were examined through uniaxial compression particle flow simulation. The results show that when the relative area is constant, the larger the fracture dip angle is, the compressive strength of the composite body presents a similar "peak" type change; the dip angle appears to have the maximum value at 60 o and 90o and the minimum value at 0 o and 30 o, while the peak elastic modulus presents a "waterfall" type change, and the maximum value appears at 90o. The crack types were classified as shear cracks, tensile cracks, secondary shear cracks, secondary tensile cracks, shear-dominated mixed cracks, and tension-dominated mixed cracks.

View Article and Find Full Text PDF

Coccolithophores are prominent marine pelagic calcifiers due to their production of calcite coccoliths. Diploid coccolithophores produce heterococcoliths intracellularly, with an organic cellulose baseplate scale acting as a nucleating substrate. However, coccolith production in the haploid life phase has not been extensively studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!