A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High throughput screening of ultrafiltration and diafiltration processing of monoclonal antibodies via the ambr® crossflow system. | LitMetric

High throughput screening of ultrafiltration and diafiltration processing of monoclonal antibodies via the ambr® crossflow system.

Biotechnol Prog

Downstream Process Development & Engineering, Merck & Co., Inc, Kenilworth, New Jersey.

Published: March 2020

As the biopharmaceutical industry moves toward high concentration of monoclonal antibody drug substance, additional development is required early on when material is still limited. A key constraint is the availability of predictive high-throughput low-volume filtration screening systems for bioprocess development. This particularly impacts final stages such as ultrafiltration/diafiltration steps where traditional scale-down systems need hundreds of milliliters of material per run. Recently, the ambr® crossflow system has been commercialized by Sartorius Stedim Biotech (SSB) to meet this need. It enables parallel high throughput experimentation by only using a fraction of typical material requirements. Critical parameters for predictive filtration systems include loading, mean transmembrane pressure (Δ ), and crossflow rate (Q ). While axial pressure drop (ΔP ) across the cartridge is a function of these parameters, it plays a key role and similar values should result across scales. The ambr® crossflow system is first presented describing typical screening experiments. Its performance is then compared to a traditional pilot-scale tangential flow filtration (TFF) at defined conditions. The original ambr® crossflow (CF) cartridge underperformed resulting in ~20x lower ΔP than the pilot-scale TFF flat-sheet cassette. With an objective to improve the scalability of the system, efforts were made to understand this scale difference. The ambr® CF cartridge was successfully modified by restricting the flow of the feed channel, and thus increasing its ΔP . Additional studies across a range of loading (100-823 gm ); Δ (12-18 psi); and Q (4-8 L/min/m ) were conducted in both scales. Comparable flux and aggregate levels were achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.2929DOI Listing

Publication Analysis

Top Keywords

ambr® crossflow
16
crossflow system
12
high throughput
8
ambr®
5
crossflow
5
throughput screening
4
screening ultrafiltration
4
ultrafiltration diafiltration
4
diafiltration processing
4
processing monoclonal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!