Natural Hydrogels Applied in Photodynamic Therapy.

Curr Med Chem

School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

Published: August 2020

Natural hydrogels are three-dimensional (3D) water-retaining materials with a skeleton consisting of natural polymers, their derivatives or mixtures. Natural hydrogels can provide sustained or controlled drug release and possess some unique properties of natural polymers, such as biodegradability, biocompatibility and some additional functions, such as CD44 targeting of hyaluronic acid. Natural hydrogels can be used with photosensitizers (PSs) in photodynamic therapy (PDT) to increase the range of applications. In the current review, the pertinent design variables are discussed along with a description of the categories of natural hydrogels available for PDT.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867326666191016112828DOI Listing

Publication Analysis

Top Keywords

natural hydrogels
20
photodynamic therapy
8
natural polymers
8
natural
7
hydrogels applied
4
applied photodynamic
4
therapy natural
4
hydrogels
4
hydrogels three-dimensional
4
three-dimensional water-retaining
4

Similar Publications

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.

View Article and Find Full Text PDF

A Wireless Health Monitoring System Accomplishing Bimodal Decoupling Based on an "IS"-Shaped Multifunctional Conductive Hydrogel.

Small

January 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.

Flexible wearable sensors with bimodal functionality offer substantial value for human health monitoring, as relying on a single indicator is insufficient for capturing comprehensive physiological information. However, bimodal sensors face multiple challenges in practical applications, including mutual interference between various modalities, and integration of excellent mechanical properties, interfacial adhesion, environmental adaptability and biocompatibility. Herein, the multifunctional hydrogel, synthesized through radical grafting and supramolecular self-crosslinking reactions, exhibits excellent thermal sensitivity (TCR = -1.

View Article and Find Full Text PDF

The natural extracellular hemoglobin of the lugworm Arenicola marina (AmHb) has many interesting characteristics: It carries 40 times more oxygen than human hemoglobin; has anti-inflammatory, antibacterial, and antioxidant properties; and is 250 times smaller than a red blood cell. It is nontoxic and nonimmunogenic. It is thus a very promising hemoglobin-based oxygen carrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!