Exercise has positive effects on health and improves a variety of disease conditions. An in vitro model of exercise has been developed to better understand its molecular mechanisms. While various conditions have been used to mimic in vivo exercise, no specific conditions have matched a specific type of in vivo exercise. Here, we screened various electrical pulse stimulation (EPS) conditions and compared the molecular events under each condition in myotube culture with that obtained under voluntary wheel running (VWR), a mild endurance exercise, in mice. Both EPS and VWR upregulated the mRNA levels of genes involved in the slow-type twitch ( and ) and myogenesis ( and ) and increased the protein expression of peroxisome proliferator-activated receptor-γ coactivator-1α, which is involved in mitochondrial biogenesis. These changes were accompanied by activation of p38 and AMPK. However, neither condition induced the expression of muscle-specific E3 ligases such as MAFbx and MuRF1. Both EPS and VWR consistently induced antioxidant genes such as and but did not cause similar changes in the expression levels of the calcium channel/pump-related genes and . Furthermore, both EPS and VWR reduced glycogen levels but not lactate levels as assessed in post-EPS culture medium and post-VWR serum, respectively. Thus we identified an in vitro EPS condition that effectively mimics VWR in mice, which can facilitate further studies of the detailed molecular mechanisms of endurance exercise in the absence of interference from multiple tissues and organs. This study establishes an optimal condition for electrical pulse stimulation (EPS) in myotubes that shows a similar molecular signature as voluntary wheel running. The specific EPS condition ) upregulates the mRNA of slow-twitch muscle components and myogenic transcription factors, ) induces antioxidant genes without any muscle damage, and ) promotes peroxisome proliferator-activated receptor-γ coactivator-1α and its upstream regulators involved in mitochondrial biogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00091.2019DOI Listing

Publication Analysis

Top Keywords

endurance exercise
12
eps vwr
12
molecular mechanisms
8
vivo exercise
8
electrical pulse
8
pulse stimulation
8
stimulation eps
8
voluntary wheel
8
wheel running
8
peroxisome proliferator-activated
8

Similar Publications

Acute Co-Ingestion of Caffeine and Sodium Bicarbonate on Muscular Endurance Performance.

Nutrients

December 2024

Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28801 Madrid, Spain.

Caffeine and sodium bicarbonate individually enhance muscular endurance by delaying fatigue, but their combined effects have scarcely been studied. : This study aimed to evaluate the acute effects of co-ingesting caffeine and sodium bicarbonate on muscular endurance at different loads in bench press and back squat exercises. : Twenty-seven recreationally trained participants (female/male: 14/14; age: 23 ± 3.

View Article and Find Full Text PDF

Enhancing Performance in Young Athletes: A Systematic Review of Acute Supplementation Effects.

Nutrients

December 2024

Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal.

Background/objectives: The increasing popularity of acute supplementation among young athletes is concerning, given the limited scientific evidence to guide recommendations specific to this group. Therefore, the aim of this systematic review was to synthesize the available scientific evidence on the acute effects of supplementation in young athletes to understand the impact on physical and cognitive performance.

Methods: Following pre-registration on INPLASY (INPLASY202310017) and according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, systematic searches of three electronic databases (Web of Science, PubMed, and Scopus) were conducted by independent researchers from inception until July 2024.

View Article and Find Full Text PDF

The confirmed benefits of regular moderate exercise on cardiovascular health have positioned athletes as an illustration of well-being. However, concerns have arisen regarding the potential predisposition to arrhythmias in individuals engaged in prolonged strenuous exercise. Atrial fibrillation (AF), the most common heart arrhythmia, is typically associated with age-related risks but has been documented in otherwise healthy young and middle-aged endurance athletes.

View Article and Find Full Text PDF

Differential Gut Microbiome Profiles in Long-Distance Endurance Cyclists and Runners.

Life (Basel)

December 2024

Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel.

We recently have shown that the gut microbiota composition in female and male runners positively correlates with sports, and female runners show similar gut microbiome diversity to male runners. However, gut microbiota composition has not yet been fully investigated in other endurance athletes, such as cyclists. Therefore, in the current study, we investigated the gut microbiome profiles in competitive, non-professional female and male cyclists compared to what we have shown in runners.

View Article and Find Full Text PDF

Mental fatigue is an important factor affecting athletes' performance. Explaining the effects of mental fatigue on sports performance from a theoretical point of view can help us deeply understand the interconnection between mental fatigue and sports performance and conduct effective interventions based on this. Combining the relevant literature in China and abroad reveals that the current academic theories on the mechanism of sports fatigue include motivational control theory, underload theory, neural waste disposal hypothesis, and resource depletion theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!