The photoluminescence of lanthanide ions inside fullerenes is usually very weak due to the quenching effect of the fullerene cage. In the case of Er@C, the near-infrared emission from the Er ion is completely quenched by the C fullerene cage. It remains challenging to turn on the photoluminescence of Er@C and other monometallofullerenes. In this work, we adopt a covalent modification strategy to alter the electronic structure of the fullerene cage for sensitizing the near-infrared emission of Er ions in metallofullerenes Er@C (2 = 72, 76, and 82). After covalent modification with trifluoromethyl, phenyl, or dichlorophenyl groups, the erbium metallofullerenes exhibit photoluminescence at 1.5 μm, which is the characteristic emission of the Er ion. Particularly, the otherwise nonfluorescent metallofullerene Er@C is transformed into fluorescent derivatives by using this strategy. The photoluminescence from the Er ion is ascribed to energy transfer from the fullerene cage to the Er ion. According to theoretical calculations, the sensitization of the Er ion by the fullerene cage is associated with the large HOMO-LUMO gap and the closed-shell electronic structure of the metallofullerene derivatives. This work provides useful guidance for the design and synthesis of new fluorescent metallofullerenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b01316 | DOI Listing |
J Phys Chem Lett
January 2025
MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
The ultrafast excited-state dynamics of endohedral fullerenes are crucial in their photophysical and photochemical processes when they are employed as photovoltaic devices, photocatalytic devices, and single-molecule devices. In this study, by employing the non-adiabatic molecular dynamics simulations based on the time-dependent Kohn-Sham (TD-KS) method, we theoretically studied the size effect on ultrafast excited-state decay dynamics of the photoexcited Be electron in endohedral fullerenes Be@C (2 = 60, 70, and 80). These excited-state decay dynamics, which involve the charge-transfer process, occur in an ultrafast time scale of about 3 ps.
View Article and Find Full Text PDFChemistry
January 2025
Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova, Chemistry Department, RUSSIAN FEDERATION.
We provide important novel insights into skeletal transformations of fullerene by reporting new cases of cage shrinkage in the most abundant C60 fullerene via a C2 loss. High-temperature (400-500 oC) chlorination of IPR C60 with SbCl5 or SbCl5/SbCl3 mixtures predominantly gives non-IPR C60Cln compounds via Stone-Wales rearrangements, but the present study further reveals non-classical C58Cln chlorofullerenes as by-products. The new C58(NC1)Cl20 and C58(NC1)Cl24 chlorides have been isolated by air-free HPLC and structurally characterized by X-ray crystallography.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
A thorium-carbon double bond that corresponds to the sum of theoretical covalent double bond radii has long been sought after in the study of actinide-ligand multiple bonding as a synthetic target. However, the stabilization of this chemical bond remains a great challenge to date, in part because of a relatively poor energetic matching between 5f-/6d- orbitals of thorium and the 2s-/2p- frontier orbitals of carbon. Herein, we report the successful synthesis of a thorium-carbon double bond in a carbon-bridged actinide-transition metal cluster, i.
View Article and Find Full Text PDFChem Sci
December 2024
Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain
Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.
View Article and Find Full Text PDFJ Chem Phys
January 2025
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
Endohedral and exohedral fullerenes have both been employed as electron acceptors in polymer solar cells (PSCs). However, their differences in hot-electron relaxation dynamics remain unclear. Previous studies have shown that the location of a single atom, whether inside or outside the fullerene cage, results in significant differences in charge distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!