The ability to execute a motor plan involves spatiotemporally precise oscillatory activity in primary motor (M1) regions, in concert with recruitment of "higher order" attentional mechanisms for orienting toward current task goals. While current evidence implicates gamma oscillatory activity in M1 as central to the execution of a movement, far less is known about top-down attentional modulation of this response. Herein, we utilized magnetoencephalography (MEG) during a Posner attention-reorienting task to investigate top-down modulation of M1 gamma responses by frontal attention networks in 63 healthy adult participants. MEG data were evaluated in the time-frequency domain and significant oscillatory responses were imaged using a beamformer. Robust increases in theta activity were found in bilateral inferior frontal gyri (IFG), with significantly stronger responses evident in trials that required attentional reorienting relative to those that did not. Additionally, strong gamma oscillations (60-80 Hz) were detected in M1 during movement execution, with similar responses elicited irrespective of attentional reorienting. Whole-brain voxel-wise correlations between validity difference scores (i.e., attention reorienting trials-nonreorienting trials) in frontal theta activity and movement-locked gamma oscillations revealed a robust relationship in the contralateral sensorimotor cortex, supplementary motor area, and right cerebellum, suggesting modulation of these sensorimotor network gamma responses by attentional reorienting. Importantly, the validity difference effect in this distributed motor network was predictive of overall motor function measured outside the scanner and further, based on a mediation analysis this relationship was fully mediated by the reallocation response in the right IFG. These data are the first to characterize the top-down modulation of movement-related gamma responses during attentional reorienting and movement execution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268018PMC
http://dx.doi.org/10.1002/hbm.24819DOI Listing

Publication Analysis

Top Keywords

attentional reorienting
16
gamma responses
12
oscillatory activity
8
top-down modulation
8
theta activity
8
gamma oscillations
8
movement execution
8
validity difference
8
responses attentional
8
gamma
7

Similar Publications

Individual differences in how the brain responds to novelty are present from infancy. A common method of studying novelty processing is through event-related potentials (ERPs). While ERPs possess millisecond precision, spatial resolution remains poor, especially in infancy.

View Article and Find Full Text PDF

During early life, we develop the ability to choose what we focus on and what we ignore, allowing us to regulate perception and action in complex environments. But how does this change influence how we spontaneously allocate attention to real-world objects during free behaviour? Here, in this narrative review, we examine this question by considering the time dynamics of spontaneous overt visual attention, and how these develop through early life. Even in early childhood, visual attention shifts occur both periodically and aperiodically.

View Article and Find Full Text PDF

Inorganic Nanorods Enable the Memorization of Photoinduced Microlens Arrays in Dye-Doped Liquid Crystals.

ACS Appl Mater Interfaces

December 2024

Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.

The photoinduced molecular reorientation of liquid crystals (LCs) caused by their nonlinear optical responses has attracted much attention due to their large refractive index change, leading to promising applications in optical devices. This reorientation is typically induced by light irradiation above a threshold intensity and is temporary, with the initial orientation recovering unless the LCs are polymerized and cross-linked. Our report highlights the memory effect of molecular reorientation in LCs.

View Article and Find Full Text PDF

Colossal magnetoresistance (CMR) is an exotic phenomenon that allows for the efficient magnetic control of electrical resistivity and has attracted significant attention in condensed matter due to its potential for memory and spintronic applications. Heusler alloys are the subject of considerable interest in this context due to the electronic properties that result from the nontrivial band topology. Here, the observation of CMR near room temperature is reported in the shape memory Heusler alloy NiMnIn, which is attributed to the combined effects of magnetic field-induced martensite twin variant reorientation (MFIR) and magnetic field-induced structural phase transformation (MFIPT).

View Article and Find Full Text PDF

Background: The implementation of social innovations for addressing societal challenges, particularly in health, leverages community participation and technology to optimally meet social needs compared to traditional approaches. A key feature of these innovations is their ability to utilize existing capacities for contributing to resolving infectious disease outbreaks, which has attracted significant attention from health organizations. Given the potential of these innovations, this study has investigated social innovations in the prevention and control of infectious diseases as one of the major global challenges in the form of a comprehensive literature review.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!