Parkinson's disease (PD) is a multifactorial disorder with complex etiology. The most prevalent PD associated mutation, LRRK2-G2019S is linked to familial and sporadic cases. Based on the multitude of genetic predispositions in PD and the incomplete penetrance of LRRK2-G2019S, we hypothesize that modifiers in the patients' genetic background act as susceptibility factors for developing PD. To assess LRRK2-G2019S modifiers, we used human induced pluripotent stem cell-derived neuroepithelial stem cells (NESCs). Isogenic controls distinguish between LRRK2-G2019S dependent and independent cellular phenotypes. LRRK2-G2019S patient and healthy mutagenized lines showed altered NESC self-renewal and viability, as well as impaired serine metabolism. In patient cells, phenotypes were only partly LRRK2-G2019S dependent, suggesting a significant contribution of the genetic background. In this context we identified the gene serine racemase (SRR) as a novel patient-specific, developmental, genetic modifier contributing to the aberrant phenotypes. Its enzymatic product, d-serine, rescued altered cellular phenotypes. Susceptibility factors in the genetic background, such as SRR, could be new targets for early PD diagnosis and treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parkreldis.2019.09.018DOI Listing

Publication Analysis

Top Keywords

genetic background
12
impaired serine
8
serine metabolism
8
susceptibility factors
8
lrrk2-g2019s dependent
8
cellular phenotypes
8
lrrk2-g2019s
7
genetic
5
metabolism complements
4
complements lrrk2-g2019s
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!