In this work, medical diagnosis of sepsis was conducted via quantitative analysis of lysophosphatidylcholine 16:0 (LPC 16:0) by using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry based on a parylene-matrix chip. In the first step, specific mass peaks for the diagnosis of sepsis were searched by comparing MALDI-TOF mass spectra of sepsis patient sera with healthy controls and pneumonia patient sera. Two mass peaks at / = 496.3 and 518.3 were chosen as those that are specifically different for sepsis sera to compare with healthy controls and pneumonia patient sera. These mass peaks were identified to be protonated and sodium adducts of LPC 16:0 by using tandem mass spectra (MS and MS) of purely synthesized LPC 16:0 and extracted LPC 16:0 from a healthy control and a sepsis patient. In the next step, a standard curve for LPC 16:0 for the quantitative analysis of LPC 16:0 with MALDI-TOF MS based on the parylene-matrix chip was prepared, and the statistical correlation to the LC-MS analysis results was demonstrated by using the Bland-Altman test and Passing-Bablok regression. Finally, MALDI-TOF MS based on the parylene-matrix chip was used for the quantification of LPC 16:0 with sera from patients with severe sepsis and septic shock ( = 143), pneumonia patients ( = 12), and healthy sera ( = 31). The sensitivity and the selectivity of medical diagnosis of sepsis was estimated to be 97.9% and 95.5% by using MALDI-TOF MS based on the parylene-matrix chip, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b04019DOI Listing

Publication Analysis

Top Keywords

lpc 160
28
based parylene-matrix
20
parylene-matrix chip
20
patient sera
16
maldi-tof mass
12
sepsis patient
12
diagnosis sepsis
12
mass peaks
12
maldi-tof based
12
mass spectrometry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!