Quantitative analysis of gases by Raman spectroscopy is based on relative Raman scattering cross sections (RRSCS) and the evolution of different spectral parameters (peak position, peak area, peak intensity, etc.). However, most of the calibration data were established at low pressure (low density) and without evaluating the effect of the composition. Using these data may lead to considerable errors, especially when applied to gas mixtures at high pressure as found in natural fluid inclusions. The aim of this study is to reevaluate the RRSCS of CO and to establish new calibration data based on the variation of CO Fermi diad splitting as a function of pressure (density) and composition over a pressure range of 5-600 bar at 22 and 32 °C. A high-pressure optical cell system (HPOC) and a heating-cooling stage were used for Raman in situ analyses at controlled conditions. Our experimental results show that the RRSCS of CO varies slightly with pressure but can be considered constant over the studied pressure range. It can be used to measure the proportion of CO in gas mixtures with an uncertainty of about ±0.5 mol%. Different polynomial equations were provided to calculate pressure and density of CO-N gas mixtures with an uncertainty of ±20 bar or 0.01 g·cm. A comparison of properties of natural CO-N fluid inclusions hosted in quartz from the Central Alps (Switzerland) obtained by Raman measurement and as derived from phase transition temperatures by microthermometry experiments shows comparable values.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b02803DOI Listing

Publication Analysis

Top Keywords

gas mixtures
16
pressure density
12
pressure
8
composition pressure
8
co-n gas
8
raman spectroscopy
8
calibration data
8
fluid inclusions
8
pressure range
8
mixtures uncertainty
8

Similar Publications

Energy-efficient separation of light alkanes from alkenes is considered as one of the most important separations of the chemical industry today due to the high energy penalty associated with the applied conventional cryogenic technologies. This study introduces fluorine-doped activated carbon adsorbents, where elemental fluorine incorporation into the carbon matrix plays a unique role in achieving high ethane selectivity. This enhanced selectivity arises from specific interactions between surface-doped fluorine atoms and ethane molecules, coupled with porosity modulation.

View Article and Find Full Text PDF

There is no consensus in the literature regarding the ideal protocol for obtaining and preparing cell samples for untargeted metabolomics. Nevertheless, the procedures must be carefully evaluated for proper and reliable results for each organism under study. This work proposes a novel protocol for determining intracellular metabolites in Leishmania promastigotes and is fully optimized for application in conjunction with gas chromatography-mass spectrometry platforms.

View Article and Find Full Text PDF

Optimization of the Antibacterial Activity of a Three-Component Essential Oil Mixture from Moroccan , , and Using a Simplex-Centroid Design.

Pharmaceuticals (Basel)

January 2025

Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco.

Background/objectives: The rise of antibiotic-resistant pathogens has become a global health crisis, necessitating the development of alternative antimicrobial strategies. This study aimed to optimize the antibacterial effects of essential oils (EOs) from , , and , enhancing their efficacy through optimized mixtures.

Methods: This study utilized a simplex-centroid design to optimize the mixture ratios of EOs for maximal antibacterial and antioxidant effectiveness.

View Article and Find Full Text PDF

The hydrate blockage avoidance performance of two anti-agglomerants (coconut amidopropyl dimethylamine, propylene bis (octadecylamidopropyl dimethylammonium chloride)) and their mixtures with polyvinylpyrrolidone (PVP) was tested in a high-pressure rocking cell apparatus. The effect of gas-liquid ratio, water content and PVP concentration were analyzed. A method for evaluating the kinetic inhibiting and anti-agglomerating performance of hydrate inhibitors was established.

View Article and Find Full Text PDF

Species of the genus are known for their pharmacological properties and essential oils, the chemical composition of which remains inadequately studied. In this work, GC-MS analysis, synthesis, and spectral techniques (UV, IR, MS, and NMR) were employed to identify 83 constituents in the essential oil from roots, which accounted for 98.1% of the total GC-peak area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!