Preclinical evaluation of a Cu-labeled disintegrin for PET imaging of prostate cancer.

Amino Acids

Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Published: November 2019

A novel recombinant disintegrin, vicrostatin (VCN), displays high binding affinity to a broad range of human integrins in substantial competitive biological advantage over other integrin-based antagonists. In this study, we synthesized a new Cu-labeled VCN probe and evaluated its imaging properties for prostate cancer in PC-3 tumor-bearing mice. Macrocyclic chelating agent 1,8-diamino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]-eicosine (DiAmSar) was conjugated with PEG unit and followed by coupling with VCN. The precursor was then radiolabeled with positron emitter Cu (t = 12.7 h) in ammonium acetate buffer to provide Cu-Sar-PEG-VCN, which was subsequently subjected to in vitro studies, small animal PET, and biodistribution studies. The PC-3 tumor-targeting efficacy of Cu-Sar-PEG-VCN was compared to a cyclic RGD peptide-based PET probe (Cu-Sar-RGD). Cu labeling was achieved in 75% decay-corrected yield with radiochemical purity of  > 98%. The specific activity of Cu-Sar-PEG-VCN was estimated to be 37 MBq/nmol. MicroPET imaging results showed that Cu-Sar-PEG-VCN has preferential tumor uptake and good tumor retention in PC-3 tumor xenografts. As compared to Cu-Sar-RGD, Cu-Sar-PEG-VCN produces higher tumor-to-muscle (T/M) imaging contrast ratios at 2 h (4.66 ± 0.34 vs. 2.88 ± 0.46) and 24 h (4.98 ± 0.80 vs. 3.22 ± 0.30) post-injection (pi) and similar tumor-to-liver ratios at 2 h (0.43 ± 0.09 vs. 0.37 ± 0.04) and 24 h (0.57 ± 0.13 vs. 0.52 ± 0.07) pi. The biodistribution results were consistent with the quantitative analysis of microPET imaging, demonstrating good T/M ratio (2.73 ± 0.36) of Cu-Sar-PEG-VCN at 48 h pi in PC-3 tumor xenografts. For both microPET and biodistribution studies at 48 h pi, the PC-3 tumor uptake of Cu-Sar-PEG-VCN is lower than that of Cu-Sar-RGD. Cu-Sar-PEG-VCN has the potential for in vivo imaging of prostate cancer with PET, which may provide a unique non-invasive method to quantitatively localize and characterize prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881555PMC
http://dx.doi.org/10.1007/s00726-019-02794-3DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
pc-3 tumor
12
imaging prostate
8
cu-sar-peg-vcn
8
biodistribution studies
8
micropet imaging
8
tumor uptake
8
tumor xenografts
8
cu-sar-rgd cu-sar-peg-vcn
8
ratios 2 h
8

Similar Publications

Vaccine Therapies for Prostate Cancer: Current Status and Future Outlook.

Vaccines (Basel)

December 2024

Department of Urology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.

Prostate cancer is a prevalent cancer in elderly men, and immunotherapy has emerged as a promising treatment approach in recent years. The aim of immunotherapy is to stimulate the body's immune system to target and destroy cancer cells. Cancer vaccines that are highly specific, safe, and capable of creating long-lasting immune responses are a key focus in cancer immunotherapy research.

View Article and Find Full Text PDF

Optimized Synthetic Correlated Diffusion Imaging for Improving Breast Cancer Tumor Delineation.

Sensors (Basel)

December 2024

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Breast cancer is a significant cause of death from cancer in women globally, highlighting the need for improved diagnostic imaging to enhance patient outcomes. Accurate tumor identification is essential for diagnosis, treatment, and monitoring, emphasizing the importance of advanced imaging technologies that provide detailed views of tumor characteristics and disease. Recently, a new imaging modality named synthetic correlated diffusion imaging (CDI) has been showing promise for enhanced prostate cancer delineation when compared to existing MRI imaging modalities.

View Article and Find Full Text PDF

Background: Radiochemical purity is a key criterion for the quality of radiopharmaceuticals used in clinical practice. The joint improvement of analytical methods capable of identifying related radiochemical impurities and determining the actual radiochemical purity, as well as the improvement of synthesis methods to minimize the formation of possible radiochemical impurities, is integral to the implementation of high-tech nuclear medicine procedures. PSMA-targeted radionuclide therapy with lutetium-177 has emerged as an effective treatment option for prostate cancer, and [Lu]Lu-PSMA-617 and [Lu]Lu-PSMA have achieved global recognition as viable radiopharmaceuticals.

View Article and Find Full Text PDF

Investigating the Potential Effects of 6PPDQ on Prostate Cancer Through Network Toxicology and Molecular Docking.

Toxics

December 2024

Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.

(1) Background: N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPDQ), as a newly discovered environmental toxin, has been found more frequently in our living conditions. The literature reports that damage to the reproductive and cardiovascular system is associated with exposure to 6PPDQ. However, the relationship between 6PPDQ and cancer still requires more investigation.

View Article and Find Full Text PDF

Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!