Dynamic causal modeling (DCM)-a framework for inferring hidden neuronal states from brain activity measurements (e. g., fMRI) and their context-dependent modulation-was developed for human neuroimaging, and has not been optimized for non-human primate (NHP) studies, which are usually done under anesthesia. Animal neuroimaging studies offer the potential to improve effective connectivity modeling using DCM through combining functional imaging with invasive procedures such as optogenetic or electrical stimulation. Employing a Bayesian approach, model parameters are estimated based on prior knowledge of conditions that might be related to neural and BOLD dynamics (e.g., requires empirical knowledge about the range of plausible parameter values). As such, we address the following questions in this review: What factors need to be considered when applying DCM to NHP data? What differences in functional networks, cerebrovascular architecture and physiology exist between human and NHPs that are relevant for DCM application? How do anesthetics affect vascular physiology, BOLD contrast, and neural dynamics-particularly, effective communication within, and between networks? Considering the factors that are relevant for DCM application to NHP neuroimaging, we propose a strategy for modeling effective connectivity under anesthesia using an integrated physiologic-stochastic DCM (IPS-DCM).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759819 | PMC |
http://dx.doi.org/10.3389/fnins.2019.00973 | DOI Listing |
Int J Toxicol
January 2025
Chemical and Preclinical Safety Department, Global Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany.
The therapeutic window of antibody drug-conjugates (ADC) remains challenging due to safety issues such as interstitial lung disease (ILD) observed with specific deruxtecan-based ADCs. To avoid ILD, we designed M9140 by conjugating the maleimide-containing hydrophilic β-glucuronide linker to exatecan and our anti-CEACAM5 (CarcinoEmbryonic Antigen-related Cell Adhesion Molecule 5) specific antibody. Following repeated iv-infusion at 3 to 30 mg/kg of M9140 every 3 weeks, the pathological findings obtained in cynomolgus monkeys were confined to gastrointestinal and hematolymphoid tissues and resembled the toxicity of exatecan.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Salk Institute for Biological Studies, La Jolla, CA, USA.
Background: As humans age, some experience cognitive impairment while others do not. When impairment occurs, it varies in severity across individuals. Translationally relevant models are critical for understanding the neurobiological drivers of this variability, which is essential to uncovering the mechanisms underlying the brain's susceptibility to aging.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Michigan Medical School, Ann Arbor, MI, USA.
Background: The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species and recently demonstrated to occur in rare instances from one human generation to the next.
Method: Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals.
Alzheimers Dement
December 2024
Cleveland Clinic, Cleveland, OH, USA.
Background: Apolipoprotein E (ApoE) is the primary cholesterol and lipid transporting apolipoprotein in the central nervous system (CNS) and is the greatest genetic risk factor for Alzheimer's Disease (AD). There are three main isoforms differing by single amino acid changes: ε3 is "neutral", ε4 is "risk" (Cys112Arg), and ε2 is "resilience" (Arg158Cys). Rare forms (Christchurch, Jacksonville) have also been proposed as resilience alleles, while an ε4-like allele (with Arg61Thr) is present in non-human primates without AD risk.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
AviadoBio, London, London, United Kingdom.
Background: Frontotemporal dementia (FTD) presents with a change in personality, behaviour and language and is the second most common cause of young-onset dementia after Alzheimer's disease. Loss of function mutations in GRN, encoding progranulin (PGRN), causes FTD in the heterozygous state, accounting for 5-10% of all FTD cases. PGRN is essential for normal lysosomal function and neuronal survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!