Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanopowders of hydroxyapatite (HA), modified by magnesium (MgHA) and by silicon (SiHA) were obtained by liquid-phase microwave synthesis method. X-ray diffraction and IR spectroscopy results showed that Mg and SiO ions were present in the synthesized products both as secondary phases and as part of the HA phase. Whitlockite was found in the magnesium-modified HA (MgHA) and larnite was found in the silicon-modified HA (SiHA); ion substitution for both materials resulted in solid solutions. In the synthesized samples of modified HA, the increase of particle size of powders was in the order HA < SiHA < MgHA, which was calculated through data specific surface area and measured pycnometric density of the powders. The Lewis acid sites (Ca, Mg, Si) were present using spectral probes on the surface of the samples of HA, MgHA, and SiHA, and the acidity of these sites decreased in the order SiHA > MgHA > HA. The rates of calcium phosphate layer deposition on the surface of these materials at 37 °C in the model simulated body fluid solution showed similar dependence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795999 | PMC |
http://dx.doi.org/10.1038/s41598-019-50777-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!