The overarching goal of the NIH BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative is to advance the understanding of healthy and diseased brain circuit function through technological innovation. Core principles for this goal include the validation and dissemination of the myriad innovative technologies, tools, methods, and resources emerging from BRAIN-funded research. Innovators, BRAIN funding agencies, and non-Federal partners are working together to develop strategies for making these products usable, available, and accessible to the scientific community. Here, we describe several early strategies for supporting the dissemination of BRAIN technologies. We aim to invigorate a dialogue with the neuroscience research and funding community, interdisciplinary collaborators, and trainees about the existing and future opportunities for cultivating groundbreaking research products into mature, integrated, and adaptable research systems. Along with the accompanying Society for Neuroscience 2019 Mini-Symposium, "BRAIN Initiative: Cutting-Edge Tools and Resources for the Community," we spotlight the work of several BRAIN investigator teams who are making progress toward providing tools, technologies, and services for the neuroscience community. These tools access neural circuits at multiple levels of analysis, from subcellular composition to brain-wide network connectivity, including the following: integrated systems for EM- and florescence-based connectomics, advances in immunolabeling capabilities, and resources for recording and analyzing functional connectivity. Investigators describe how the resources they provide to the community will contribute to achieving the goals of the NIH BRAIN Initiative. Finally, in addition to celebrating the contributions of these BRAIN-funded investigators, the Mini-Symposium will illustrate the broader diversity of BRAIN Initiative investments in cutting-edge technologies and resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794930 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1169-19.2019 | DOI Listing |
J Alzheimers Dis
January 2025
Alzheimer Centrum Limburg, Mental Health and Neuroscience Research Institute (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands.
Background: There is consistent evidence for the contribution of modifiable risk factors to dementia risk, offering opportunities for primary prevention. Yet, most individuals are unaware of these opportunities.
Objective: To investigate whether online education about dementia risk reduction may be a low-level means to increase knowledge and support self-management of modifiable dementia risk factors.
Brain Behav
January 2025
Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany.
Purpose: Due to the highly individualized clinical manifestation of Parkinson's disease (PD), personalized patient care may require domain-specific assessment of neurological disability. Evidence from magnetic resonance imaging (MRI) studies has proposed that heterogenous clinical manifestation corresponds to heterogeneous cortical disease burden, suggesting customized, high-resolution assessment of cortical pathology as a candidate biomarker for domain-specific assessment.
Method: Herein, we investigate the potential of the recently proposed Mosaic Approach (MAP), a normative framework for quantifying individual cortical disease burden with respect to a population-representative cohort, in predicting domain-specific clinical progression.
Alzheimers Res Ther
January 2025
Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.
Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.
Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.
Int J Equity Health
January 2025
Tekano, Capetown, South Africa.
Globally, individuals with Down syndrome (DS) face profound inequities in social and health care access. These challenges are further compounded by racial disparities as well as a lack of awareness, research, and support, particularly in the Global South. This commentary discusses the multifaceted challenges and disparities encountered by people with DS in South Africa, highlighting the need for targeted interventions.
View Article and Find Full Text PDFBMC Gastroenterol
January 2025
Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, Szczecin, 71-254, Poland.
Background: Functional gastrointestinal disorders (FGIDs), now known as disorders of gut-brain interaction (DGBIs), such as Irritable Bowel Syndrome (IBS) and Functional Dyspepsia (FD), significantly impact global health, reducing quality of life and burdening healthcare systems. This study addresses the epidemiological gap in Poland, focusing on the West Pomeranian Voivodeship.
Methods: We conducted a cross-sectional study of 2070 Caucasian patients (58.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!