Ionizing radiation increases the endothelial permeability and the transendothelial migration of tumor cells through ADAM10-activation and subsequent degradation of VE-cadherin.

BMC Cancer

Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Hölkeskampring 40, 44265, Herne, Germany.

Published: October 2019

Background: We analyzed the changes in permeability of endothelial cell layers after photon irradiation, with a focus on the metalloproteases ADAM10 and ADAM17, and on VE-cadherin, components crucial for the integrity of endothelial intercellular junctions, and their roles in the transmigration of cancer cells through endothelial cell monolayers.

Methods: Primary HUVEC were irradiated with 2 or 4 Gy photons at a dose rate of 5 Gy/min. The permeability of an irradiated endothelial monolayer for macromolecules and tumor cells was analyzed in the presence or absence of the ADAM10/17 inhibitors GI254023X and GW280264X. Expression of ADAM10, ADAM17 and VE-Cadherin in endothelial cells was quantified by immunoblotting and qRT. VE-Cadherin was additionally analyzed by immunofluorescence microscopy and ELISA.

Results: Ionizing radiation increased the permeability of endothelial monolayers and the transendothelial migration of tumor cells. This was effectively blocked by a selective inhibition (GI254023X) of ADAM10. Irradiation increased both, the expression and activity of ADAM10, which led to increased degradation of VE-cadherin, but also led to higher rates of VE-cadherin internalization. Increased degradation of VE-cadherin was also observed when endothelial monolayers were exposed to tumor-cell conditioned medium, similar to when exposed to recombinant VEGF.

Conclusions: Our results suggest a mechanism of irradiation-induced increased permeability and transendothelial migration of tumor cells based on the activation of ADAM10 and the subsequent change of endothelial permeability through the degradation and internalization of VE-cadherin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794838PMC
http://dx.doi.org/10.1186/s12885-019-6219-7DOI Listing

Publication Analysis

Top Keywords

tumor cells
16
transendothelial migration
12
migration tumor
12
degradation ve-cadherin
12
endothelial
9
ionizing radiation
8
endothelial permeability
8
permeability transendothelial
8
ve-cadherin
8
permeability endothelial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!