Background: Obesity is a pathological condition that has reached epidemic proportions; hence, it is necessary to find novel strategies aimed at fighting this disease. The present study was designed to evaluate the effect of a flavonoid-rich extract of orange () juice (OJe) in diet-induced obese zebrafish.

Methods: Adult zebrafish were divided into four diet groups: (i) normally fed (NF); (ii) overfed (OF); (iii) NF supplemented with OJe (5 mL/L in fish water; NF + OJe); and (iv) OF supplemented with OJe (OF + OJe). Each week, body weight (BW) and body mass index (BMI) were measured, and, at the end of the fifth week, euthanized zebrafish were processed for both microscopic evaluations and qPCR analyses.

Results: In OF zebrafish, OJe significantly decreased both BW and BMI values and lowered the visceral adipose tissue, while it had little effect in the NF group. Moreover, it significantly reduced adipocyte cell size in both NF and OF groups in both visceral and subcutaneous adipose tissues, as well as their number in OF fish. Finally, OJe modulated some obesity-related genes, such as leptin A, ghrelin, orexin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY), in both gut and brain.

Conclusion: This study adds new insights into the anti-obesity properties of orange juice and its flavonoids, suggesting their role as weight management agents through a lipolytic action linked to a restoration of metabolism-regulating gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834169PMC
http://dx.doi.org/10.3390/ijms20205116DOI Listing

Publication Analysis

Top Keywords

flavonoid-rich extract
8
diet-induced obese
8
orange juice
8
supplemented oje
8
oje
7
effects flavonoid-rich
4
extract juice
4
juice diet-induced
4
zebrafish
4
obese zebrafish
4

Similar Publications

Fine particulate matter (PM2.5) is known to exacerbate chronic respiratory disorders, primarily by inducing inflammatory responses and mucus overproduction. Perilla leaves are reported to have significant health benefits, such as antioxidant, antibacterial, and antiallergic properties, attributed to phenolic compounds that vary depending on genetic diversity.

View Article and Find Full Text PDF

Background: The pathophysiology of liver diseases is significantly influenced by oxidative stress, making its alleviation a key strategy for treatment. The Keap1/Nrf2 signaling pathway is the body's most crucial antioxidant defense mechanism. Traditional Chinese medicine, Desmodium heterocarpon (L.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a prevalent chronic lung condition of unknown etiology characterized by fibrosis and inflammation. Lung scarring progresses owing to cytokines and immune cells that promote inflammation and fibrosis in idiopathic pulmonary fibrosis (IPF). The anti-inflammatory and anti-fibrotic properties of the ethyl acetate extract of Clerodendrum phlomidis (CPEA), derived from the Indian plant "agnimantha," are recognized in traditional Ayurvedic medicine.

View Article and Find Full Text PDF

This study investigated the effects of flavonoid-rich extract from L. (Malvaceae) leaves on liver damage in streptozotocin-induced diabetic rats by evaluating various biochemical parameters, including the molecular gene expressions of Nrf-2 and HO-1 as well as histological parameters. The extract was found to significantly reduce liver damage, as evidenced by lower levels of fragmented DNA and protein carbonyl concentrations.

View Article and Find Full Text PDF

Introduction: Breast cancer is the most common cancer among women in the Philippines and about 3 in every 100 Filipina will be diagnosed with breast cancer in their lifetime. There is a need to discover safe, yet inexpensive herbal extracts with potential cytotoxic properties as potential treatment modalities to treat breast cancer.

Objectives: This study seeks to explore the cytotoxic and apoptotic properties of the ethyl acetate fraction of the defatted crude methanol leaf extract of in MCF-7 breast cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!