The presence of pharmaceutical compounds in the environment is a reality that calls for more efficient water treatment technologies. Photocatalysis is a powerful technology available but the high energy costs associated with the use of UV irradiation hinder its large scale implementation. More sustainable and cheaper photocatalytic processes can be achieved by improving the sunlight harvesting and the synthesis of semiconductor/carbon composites has proved to be a promising strategy. Carbamazepine, diclofenac, and sulfamethoxazole were selected as target pharmaceuticals due to their recalcitrant behavior during conventional wastewater treatment and persistence in the environment, as properly reviewed. The literature data on the photocatalytic removal of carbamazepine, diclofenac, and sulfamethoxazole by semiconductor/carbon materials was critically revised to highlight the role of the carbon in the enhanced semiconductor performance under solar irradiation. Generally it was demonstrated that carbon materials induce red-shift absorption and they contribute to more effective charge separation, thus improving the composite photoactivity. Carbon was added as a dopant (C-doping) or as support or doping materials (i.e nanoporous carbons, carbon nanotubes (CNTs), graphene, and derived materials, carbon quantum dots (CQDs), and biochars) and in the large majority of the cases, TiO was the semiconductor tested. The specific role of carbon materials is dependent on their properties but even the more amorphous forms, like nanoporous carbons or biochars, allow to prepare composites with improved properties compared to the bare semiconductor. The self-photocatalytic activity of the carbon materials was also reported and should be further explored. The removal and mineralization rates, as well as degradation pathways and toxicity of the treated solutions were also critically analyzed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832631 | PMC |
http://dx.doi.org/10.3390/molecules24203702 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Stereocontrolled construction of tetrasubstituted olefins has been an attractive issue yet remains challenging for synthetic chemists. In this manuscript, alkynyl selenides, when treated with ArBCl, are subject to an exclusive 1,1-carboboration, affording tetrasubstituted alkenes with excellent levels of E-selectivity. Detailed mechanistic studies, supported by DFT calculations, elucidates the role of selenium in this 1,1-addition process.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:
High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China. Electronic address:
Activated carbon is extensively utilized in blood purification applications. However, its performance has been significantly limited by their poor blood compatibility. In this work, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCN) and activated carbon (AC) were used to form composite beads by the drop curing method to improve hemocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!