Ultra-wideband radio signals are used in communication, indoor localization and radar systems, due to the high data rates, the high resilience to fading and the fine temporal resolution that can be achieved with a large bandwidth. This paper introduces a new method to estimate the angle of arrival of ultra-wideband radio signals with which existing time-of-flight based localization and radar systems can be augmented at no additional hardware cost. The method does not require multiple transmitter or receiver antennas, or relative motion between transmitter and receiver. Instead, it is solely based on the angle-dependent impulse response function of ultra-wideband antennas. Datasets on which the method is evaluated are publicly available. The method is further applied to a localization problem and it is shown how a robot can self-localize solely based on these angle of arrival estimates, and how they can be combined with time-of-flight measurements. Even though existing angle of arrival techniques that use multiple antennas show better accuracy, the method presented herein looks promising enough to be developed further and could potentially lead to electronically and mechanically simpler angle of arrival estimation technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832923PMC
http://dx.doi.org/10.3390/s19204466DOI Listing

Publication Analysis

Top Keywords

angle arrival
20
arrival estimation
8
based angle-dependent
8
function ultra-wideband
8
ultra-wideband radio
8
radio signals
8
localization radar
8
radar systems
8
transmitter receiver
8
solely based
8

Similar Publications

Fast radio bursts (FRBs) last for milliseconds and arrive at Earth from cosmological distances. Although their origins and emission mechanisms are unknown, their signals bear similarities with the much less luminous radio emission generated by pulsars within our Miky Way Galaxy, with properties suggesting neutron star origins. However, unlike pulsars, FRBs typically show minimal variability in their linear polarization position angle (PA) curves.

View Article and Find Full Text PDF

Distributed coordinated motion control of multiple UAVs oriented to optimization of air-ground relay network.

Sci Rep

December 2024

School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.

A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, which aims at improving the networks connectivity and the communications performance among a fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control through joint consideration with unknown multi-user mobility, environmental effects on channel characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication performance index is defined using the minimum spanning tree in graph theory, which considers both the communication link between ground node and UAV, and the communication link between ground nodes.

View Article and Find Full Text PDF

Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.

View Article and Find Full Text PDF

The ground-based solar telescope THEMIS performed several observations of Mercury's sodium exosphere in years 2011-2013, when the MESSENGER spacecraft was orbiting around the planet. Typical two-peak exospheric patterns were frequently identified. In previous studies, some specific cases of THEMIS Na two-peak observations were characterized and related to IMF conditions, during specific extreme cases, in the occasion of CME arrival.

View Article and Find Full Text PDF

Background: Ejection seats are designed to be a lifesaving device for aircrew in emergencies. Modern ejection seats are widely prevalent in fighter and bomber aircraft and are occasionally associated with acceleration injury from axial loading (Gz) during the catapult phase of ejection, limb flail injury due to windblast, or parachute landing fall, especially if the ejection is outside of the seat's performance envelope.

Case Report: We present the first known case in the medical literature of a military pilot who survived a low-altitude, high-angulation (>90° of bank angle) ejection where the pilot's ejection seat parachute did not deploy due to contact with the ground before completion of the ejection sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!