This work describes the development of a new method for ion implantation induced crystal damage recovery using multiple XeCl (308 nm) laser pulses with a duration of 30 ns. Experimental activity was carried on single phosphorus (P) as well as double phosphorus and aluminum (Al) implanted 4H-SiC epitaxial layers. Samples were then characterized through micro-Raman spectroscopy, Photoluminescence (PL) and Transmission Electron Microscopy (TEM) and results were compared with those coming from P implanted thermally annealed samples at 1650-1700-1750 °C for 1 h as well as P and Al implanted samples annealed at 1650 °C for 30 min. The activity outcome shows that laser annealing allows to achieve full crystal recovery in the energy density range between 0.50 and 0.60 J/cm. Moreover, laser treated crystal shows an almost stress-free lattice with respect to thermally annealed samples that are characterized by high point and extended defects concentration. Laser annealing process, instead, allows to strongly reduce carbon vacancy (V) concentration in the implanted area and to avoid intra-bandgap carrier recombination centres. Implanted area was almost preserved, except for some surface oxidation processes due to oxygen leakage inside the testing chamber. However, the results of this experimental activity gives way to laser annealing process viability for damage recovery and dopant activation inside the implanted area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829506 | PMC |
http://dx.doi.org/10.3390/ma12203362 | DOI Listing |
J Prosthet Dent
January 2025
Undergraduate student, School of Mechanical Engineering, Shandong University of Technology, Zibo, PR China.
Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.
Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.
Nano Lett
January 2025
Department of Physics and Astronomy, Seoul National University, 08826 Seoul, Korea.
Quantum emitters in solid-state materials are highly promising building blocks for quantum information processing and communication science. Recently, single-photon emission from van der Waals materials has been reported in transition metal dichalcogenides and hexagonal boron nitride, exhibiting the potential to realize photonic quantum technologies in two-dimensional materials. Here, we report the generation of room temperature single-photon emission from exfoliated and thermally annealed single crystals of van der Waals α-MoO.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Shenyang Academy of Instrumentation Science, Shenyang 110043, China.
Thermal treatment is a common method to improve the properties of optical thin films, but improper thermal treatment processing will result in the degradation of the optical properties of the optical thin film. The thermal stability of niobium oxide (NbO) thin films prepared by magnetron sputtering was systematically studied by analyzing the roughness and morphology of the film under different thermal treatment processes. The results show that the amorphous stability of the NbO thin film can be maintained up to 400 °C.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an 710072, China.
This study explores the fatigue behavior and fracture mechanisms of TC11 titanium alloy formed by laser metal deposition (LMD) and subjected to double annealing. The research focuses on how the alloy's unique microstructure, consisting of alternating equiaxed and columnar crystals, influences its fatigue performance. The microstructure's basket-like α' phase, made up of both plate-shaped and needle-like structures, leads to variations in crack growth behavior, as shown in the relationship between the crack growth rate and the stress intensity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!