Integrin receptors coordinate cell adhesion to the extracellular matrix (ECM) to facilitate many cellular processes during malignant transformation. Despite their pro-tumorigenic roles, therapies targeting integrins remain limited. Here, we provide genetic evidence supporting a functional redundancy between β1 and β3 integrin during breast cancer progression. Although ablation of β1 or β3 integrin alone has limited effects on ErbB2-driven mammary tumorigenesis, deletion of both receptors resulted in a significant delay in tumor onset with a corresponding impairment in lung metastasis. Mechanistically, stiff ECM cooperates with integrin receptors to recruit insulin receptors (IRs) to focal adhesion through the formation of integrin/IR complexes, thereby preventing their lysosomal degradation. β1/β3 integrin-deficient tumors that eventually emerged exhibit impaired Akt/mTORC1 activity. Murine and human breast cancers exhibiting enhanced integrin-dependent activity also display elevated IR/Akt/mTORC1 signaling activity. Together, these observations argue that integrin/IR crosstalk transduces mechanical cues from the tumor microenvironment to promote ErbB2-dependent breast cancer progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2019.09.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!