Langmuir
Institute of Continuous Media Mechanics, Acad. Koroleva St. 1 , 614013 Perm , Russia.
Published: November 2019
Surface diffusion is an important mass transfer mechanism of surfactant molecules within adsorbed layers, which has to be taken into account in many fluid dynamics problems. Although considerable research has been devoted to studying the thermodynamic and rheological properties of surface films, rather less attention has been paid to surface diffusivity measurements. Current measurement methods, which are based on marking part of surfactant molecules in uniform motionless layers with the radiotracer or fluorescence technique, are well suited for use in quite condensed layers, but they do not work in rarefied layers due to increasing contribution of density fluctuations at an interface. In this study, we propose a method for measuring the surface diffusion coefficient in gaseous monolayers of an insoluble surfactant under dynamic conditions, i.e., in the presence of a flow at an interface. Our approach is based on measuring the velocity of thermocapillary flow on the water surface, which contains molecules of an insoluble surfactant. We show that under conditions of the balance between thermo- and solutocapillary tangential stresses the convective motion exists at an interface, which is caused by a blurring of the surface concentration gradient of surfactant molecules due to the surface diffusion mechanism. For calculations of the surface diffusion coefficient, we use the equation proposed earlier in the theoretical study [ Homsy , G. M. ; 1984 139 , 443 - 459 ]. The surface diffusion coefficient measured by us in gaseous layers is 2-3 orders of magnitude larger than the results for liquid-expanded and liquid-condensed layers obtained by other researchers. Finally, we compare the obtained results with the known measurements of surface diffusion and discuss the limitations of the proposed method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b02156 | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.
View Article and Find Full Text PDFAnal Methods
November 2017
Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China. Electronic address:
Hexagonal boron nitride (h-BN) exhibits unique application potential in water purification due to its large specific surface area, high porosity, and chemical inertness. Designing adsorbents with highly active adsorption sites is one effective method to improve their adsorption capacities. In this study, porous h-BN aerogels containing multiple defect types (DP-BN) were synthesized by using salt templates.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 China. Electronic address:
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNiMnO materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.